
PHYSICAL REVIEW E SEPTEMBER 1997VOLUME 56, NUMBER 3
Mode coupling approach to the ideal glass transition of molecular liquids: Linear molecules
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Institut für Physik, Johannes Gutenberg-Universita¨t Mainz, Staudingerweg 7, D-55099 Mainz, Germany

~Received 5 May 1997!

The mode coupling theory~MCT! for the ideal liquid glass transition, which was worked out forsimple
liquids mainly by Go¨tze, Sjögren, and their co-workers, is extended to amolecularliquid of linear and rigid
molecules. By use of the projection formalism of Zwanzig and Mori an equation of motion is derived for the
correlatorsSlm,l 8m8(q,t) of the tensorial one-particle densityr lm(q,t), which contains the orientational degrees
of freedom for l .0. Application of the mode coupling approximation to the memory kernel results into a
closedset of equations forSlm,l 8m8(q,t), which requires the static correlatorsSlm,l 8m8(q) as the only input
quantities. The corresponding MCT equations for the nonergodicity parametersf l

m(q)[ f lm,lm(qe3) are solved
for a system of dipolar hard spheres by restricting the values forl to 0 and 1. Depending on the packing
fractionw and on the temperatureT, three different phases exist: a liquid phase, where translational~TDOF’s!
( l 50) andorientational~ODOF’s! ( l 51) degrees of freedom are ergodic, a phase where the TDOF are frozen
into a ~nonergodic! glassy state, whereas the ODOF’s remain ergodic, and finally a glassy phase where both,
TDOF’s and ODOF’s, are nonergodic. From the nonergodicity parametersf 0

0(q) and f 1
1(q) for q50, we may

conclude that the corresponding relaxation strength of thea peak of the compressibility can be much smaller
than the corresponding strength of the dielectric function.@S1063-651X~97!02409-4#

PACS number~s!: 61.20.Lc, 61.25.Em, 61.43.Fs
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I. INTRODUCTION

The use of mode coupling theory~MCT! more than a
decade ago represents one of the most important steps i
theoretical description of the glassy dynamics of supercoo
liquids: This theory was mainly worked out by Go¨tze,
Sjögren, and their co-workers. For reviews the reader m
consult Refs.@1–3#. A complementary approach, which
based on fluctuating nonlinear hydrodynamics, was in
duced later by Das and Mazenko and co-workers@4,5#. Both
approaches derive a closed set of equations for the ti
dependent density correlator for asimple liquid,

Sq~ t !5
1

N
^dr* ~q,t !dr~q!&, ~1!

where dr(q,t)5r(q,t)2^r(q,t)& is the fluctuation of the
Fourier-transformed one-particle densityr(x,t). Taking the
normalized correlatorfq(t)5Sq(t)/Sq , with Sq5Sq(t50)
the static correlator, the MCT equations are as follows:

f̈q~ t !1Vq
2fq~ t !1E

0

t

dt8Mq~ t2t8!ḟq~ t8!50, ~2a!

whereVq is the microscopic frequency:

Vq
25

kT

m
q2/Sq . ~2b!

Separating the fast and slow parts, the memory kernelMq(t)
can be decomposed as follows:

Mq~ t !52nqd~ t !1Vq
2mq~ t !, ~2c!

with the bare frictionnq and
561063-651X/97/56~3!/2932~18!/$10.00
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mq~ t !5
1

2N (
q1 ,q2

V~q;q1 ,q2!fq1
~ t !fq2

~ t !. ~2d!

The summation in Eq.~2d! is restricted toq1 ,q2 such that
q11q25q due to translational symmetry. The vertice
V(q;q1 ,q2) which characterize the coupling between a p
of density modes, depend on the static density correla
only. Therefore~apart fromnq!, the dynamics is uniquely
determined by the static correlatorSq . We also mention that
the right hand side of Eq.~2d! is the first term in a polyno-
mial expansion ofmq(t) into products

fq1
~ t !•••fqm

~ t ! with m>2.

Let us give a brief summary of the results which follow fro
Eqs. ~1! and ~2! ~for details, see Refs.@1–3#!. The first im-
portant result is the existence of a critical temperatureTc ~or
a critical densityrc! at which adynamical transitiontakes
place from an ergodic to a nonergodic phase. This transi
can be interpreted as a glass transition. As an order par
eter one chooses thenonergodicity parameter

f q5 lim
t→`

fq~ t !, ~3!

which vanishes in the ergodic phase, forT.Tc , and is posi-
tive for T<Tc . f q may change continuously~type-A transi-
tion! or discontinuously~type-B transition!. Let us restrict
ourselves to the type-B transition, which is relevant for stru
tural glass transitions. Then, in the vicinity ofTc , two scal-
ing law regimes occur with time scalests and t. For the
a-relaxation regime, where t is of order t, there exists a
master functionf̄q( t̄) such that

fq~ t,T!5f̄q„t/t~T!…. ~4!
2932 © 1997 The American Physical Society
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56 2933MODE COUPLING APPROACH TO THE IDEAL GLASS . . .
In the so-calledb-relaxation regime~not to be confused with
the b process!, one finds the power-law behavior

~5a!
fq~ t,T!2 f q

c; H „t/ts~T!…2a,
2„t/t~T!…b,

t0!t!ts

ts!t!t. ~5b!

f q
c[ f q(Tc) is the nonergodicity parameter atTc , and t0

'Vq
21 is a microscopic time scale. The temperature dep

dence ofts andt is given by

ts~T!;uT2Tcu21/2a ~6a!

and

t~T!;~T2Tc!
2g, T>Tc ~6b!

with g5(1/2a)1(1/2b). The two positive exponentsa and
b which are the scaling exponents of thecritical law ~5a! and
the von Schweidler law~5b!, respectively, follow from the
exponent parameterl(0,l,1):

„G~12a!…2

G~122a!
5l5

„G~11b!…2

G~112b!
, ~7!

whereG is the gamma function.l depends on the vertices a
Tc . The scaling laws~4! and ~5! only involve quantities
which can be deduced if the explicitT dependence of the
vertices is known. It is this fact which demonstrates t
strength of MCT as a microscopic theory of the glass tran
tion. The verson described above is called theidealized
MCT.

Das and Mazenko@5# discovered that the glass transitio
singularity at Tc is smeared out due to contributions
mq(t) originating from a coupling to the current density. Th
same conclusion was found later by Go¨tze and Sjo¨gren @6#.
The latter authors identified hopping processes to be res
sible for restoring ergodicity. Another interesting MCT a
proach was recently given in Ref.@7#. Assuming that detailed
balance holds, it was proven that no sharp transition te
perature exists. There was a controversy between the re
of Refs.@5, 7# and of Ref.@6# concerned with the behavior o
the a-peak width forq→0, which, however, was recentl
clarified by Latz and Schmitz@8#. Despite the necessity t
use thisextendedMCT, several experimental~e.g., Refs.@2,
3#! and numerical investigations~e.g., Refs.@9–12#! have
clearly demonstrated the existence of a signature of the g
transition singularity and the validity of the power laws~5a!
and ~5b! for a couple of glass forming systems.

However, it is not quite obvious whether the dielect
relaxation results are consistent with the predictions of
idealized MCT. Since the orientational degrees of freed
~ODOF’s!, which are probed by dielectric spectroscop
couples to the translational degrees of freedom~TDFOS’s!,
i.e., to the density fluctuations, MCT predicts for, e.g., t
dipole correlator, a power-law behavior as described by
~5! with thesameexponents. This implies that the imagina
part kq9(v) and «9(v) of the compressibility and dielectri
function, respectively, exhibit forT.Tc a minimum at the
samefrequencyvmin . Whereaskq9(v), obtained from light
and neutron scattering experiments, shows a MCT minim
n-
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,
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m

for glycerol @13#, salol @14#, CKN @15,6#, and OTP@17#, no
minimum was found in the dielectric experiments for gly
erol @18# and salol@18#. For OTP,«9(v) possesses ab peak
@19# such that a minimum exists. But its position is at mu
smaller frequencies than the corresponding minimum
kq9(v). Increasing the high-frequency range by more than
order of magnitude, Loidl and co-workers very recen
found a minimum in«9(v) for glycerol @20# and CKN@21#.
Whereas its position is in reasonable agreement for C
with the light @16# and neutron scattering data@15#, this is
not the case for glycerol. For Salol@22#, only evidenceof the
existence of a minimum in«9(v) has been found, withou
specifying its position. The status of OTP is still unclear.

This situation, and the fact that most glass formers
nature aremolecular liquids, suggest an extension of MCT t
molecular liquids in order to investigate also the dynamics
the ODOF and the role of coupling between TDOF’s a
ODOF’s. Apart from the orientational glass phases of mix
crystals@23# for which MCT was worked out by Bostoen an
Michel @24#, no such MCT approach exists for molecul
liquids. It is the main purpose of our contribution to exte
MCT to a molecular liquid oflinear molecules. A similar
investigation was performed for a single linear molecule i
simple liquid by Franoschet al. @25#, and for a molecular
liquid using fluctuating nonlinear hydrodynamics by Schm
@26#. A short account of part of our work was already give
in Ref. @27#.

Of course, there exists a huge literature concerning
orientational dynamics. For instance, one approach is the
of a Smoluchowski equation. However, this equation is u
ally linearized, which may lead to exponential relaxatio
For more detail the reader is referred to the recent review
Bagchi and Chandra@28#. There is strong numerical evi
dence from molecular dynamics simulations that even O
OF’s do exhibit nonexponential relaxation in the supercoo
molecular liquid@9,29–32#. Another review, by Madden and
Kivelson @33#, is recommended as well. There, e.g.,
‘‘three-variable’’ theory is discussed. Using the Mor
Zwanzig formalism, a three-step continued fraction for a c
relator is derived where a Markov approximation is pe
formed for the resulting memory kernel. This approach m
be reasonable in the weakly supercooled liquid, but its va
ity in the strongly supercooled regime is not obvious. F
thermore a continued fraction of anoddnumber of steps can
never lead to a glass transition singularity as described
MCT @1–3#.

Therefore, we believe that our extension of MCT to s
percooled molecular liquids may complement earlier wo
Our paper is organized as follows. Section II presents
various correlation functions and its symmetry properti
The MCT approach is discussed in its general form for lin
molecules in Sec. III and applied to a system of dipolar h
spheres in Sec. IV. Section V contains a discussion of
results and some conclusions. To avoid too much techn
calculations in the text, several appendices have been a
where the interested reader may learn more details of
specific calculation.

II. CORRELATION FUNCTIONS

In this section we present the correlations functions wh
we will investigate, as well as their symmetry properties. W
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2934 56ROLF SCHILLING AND THOMAS SCHEIDSTEGER
consider a system ofN-linear andrigid molecules with mass
M and inertia tensorI contained in a volumeV. TDOF’s are
specified by$xn%5(x1 ,...,xN) and$pn%5$p1 ,...,pN), where
xn andpn5mvn are the center-of-mass position and mome
tum of the nth molecule, respectively. For the ODOF on
may also use a canonical description@25#, but here we
choose$Vn%5(V1 ,...,VN) and $ ln%5( l1 ,...,lN) as orienta-
tional coordinates, whereVn5(fn ,un) are the Euler angles
of the nth molecule, andln5I (Vn)vn is the corresponding
angular momentum. The linear and angular velocities
respectively,vn and vn . The third Euler anglexn will be
redundant, due to the cylindrical symmetry of our molecul
With V($xn%,$Vn%) the potential energy, the classical ener
of our molecular system is given by

H~$xn%,$pn%,$Vn%,$ ln%!5 (
n51

N F 1

2M
pn

21
1

2
ln
TI21~Vn!lnG

1V~$xn%,$Vn%!, ~8!

whereln
T is the transposed ofln and theVn dependence ofI

in the laboratory frameK has been made explicit. The co
responding quantities in the body fixed frameK8 are ob-
tained from those inK by a rotationR(fn ,un). For instance,
it is

ln85 ldR~Vn!l n , vn85R~Vn!vn ~9!

and

I 85R~Vn!I ~Vn!R21~Vn!5S I
0
0

0
I
0

0
0
I 8
D , ~10!

where the body fixed frame of thenth molecule can be cho
sen such thatI 8 is diagonal.

The most basic quantity for the description of a liquid
the time-dependent,microscopicone-particle density

r~x,V,t !5 (
n51

N

d„xn2xn~ t !…d„Vn ,Vn~ t !…. ~11!

d(V,V8) denotes the invariant delta function. For this a
many other details of the theoretical description of flu
with ODOF which will be used throughout this paper, t
reader is referred to the excellent textbook by Gray and G
bins @34#. Any function f (x,V) can be expanded with re
spect to plane waves and spherical harmonics:

f ~x,V!5
1

V

1

A4p
(

q
(
l ,m

~2 i ! l f lm~q!e2 iq–xYlm* ~V!,

~12!

with the coefficients

f lm~q!5A4p i lE
V
d3xE d2V f ~x,V!eiq–xYlm~V!. ~13!
-

e,

.

b-

The factor (6 i ) l is used for technical convenience, as will b
seen below. Substitution of Eq.~11! into Eq. ~13! yields the
tensorial density modes:

r lm~q,t !5A4p i l (
n51

N

eiq–xn~ t !Ylm„Vn~ t !…. ~14!

Then the generalization of the density correlator~1! is
straightforward:

Slm; l 8m8~q,t !5
1

N
^dr lm* ~q,t !dr l 8m8~q!&, ~15!

with

dr lm~q,t !5r lm~q,t !2^r lm~q,t !&.

This correlator vanishes forq50, (l ,m)5( l 8,m8)5(0,0),
and otherwise it is given by

Slm; l 8m8~q,t !5
4p

N
i l 82 l (

n,n8
^e2 iq–~xn~ t !2xn8!

3Ylm* „Vn~ t !…Yl 8m8~Vn8!&. ~16!

For later purposes we also introduce thetranslational (a5
T) and rotational (a5R) current density

j lm
a ~q,t !5A4p i l (

n51

N

vn
a~ t !eiq–xn~ t !Ylm„Vn~ t !…, ~17!

with

vn
a~ t !5 H vn~ t !,

vn~ t !,
a5T
a5R, ~18!

and the corresponding current density correlator

Jlm; l 8m8
ak;a8k8~q,t !5

1

N
^ j lm

ak* ~q,t ! j l 8m8
a8k8~q!&

5
4p

N
i l 82 l (

n,n8
^vn

ak~ t !vn8
a8k

3e2 iq–„xn~ t !2xn8…Ylm* „Vn~ t !…Yl 8m8~Vn8!&

~19!

where, e.g.,j lm
ak , k51, 2, and 3 are the Cartesian coordina

of j lm
a . r lm and j lm

a are related by thecontinuity equation

iLr lm~q,t ![ṙ lm~q,t !5 i(
a

~ q̂aja! lm~q,t !, ~20!

whereL is the corresponding Liouvillean, and as a shortha
notation we use the operator

q̂a5 H q,
L ,

a5T
a5R, ~21!

with L the angular momentum operator. Its action on a fu
tion f lm(q) is defined as follows:



n

e
e

ar
-

d

the

or

-

-
f
. If
cor-
-

56 2935MODE COUPLING APPROACH TO THE IDEAL GLASS . . .
~ q̂akf ! lm~q!5H qkf lm~q!, a5T

(
m852 l

l

L l ,mm8
k f lm8~q!, a5R, ~22!

where

Ll ,mm8
1

6 iL l ,mm8
2 [Ll ,mm8

6
5@ l ~ l 11!2m~m61!#1/2dm8,m61 ,

Ll ,mm8
3

5mdm8m .
~23!

Now we discuss the various properties ofSlm,l 8m8(q,t).

Similar properties hold forJlm; l 8m8
ak;a8k8(q,t). This discussion is

like that of Blum and Torruella@35#, who used an expansio
into rotational invariants.

Since the time-dependent quantitiesxn(t), Vn(t), etc. fol-
low from the ~microscopic! Newtonian dynamics for given
initial conditions$xn%, $Vn%, etc., time translation and tim
reversal symmetry holds. Taking this into account, it imm
diately follows from definition~15! that

Slm; l 8m8
* ~q,t !5Sl 8m8; lm~q,t !, ~24!

i.e., the matrixS(q,t)5„Slm,l 8m8(q,t)… is Hermitian. On the
other hand, we may use Eq.~16! and the behavior ofYlm(V)
under complex conjugation. This yields

Slm; l 8m8
* ~q,t !5~21! l 1 l 81m1m8Sl 2m; l 82m8~2q,t !,

~25!

r lm(q,t;X) is a tensor field of rankl . Here we also explicitly
included the dependence on the initial conditions which
symbolically denoted byX. Then, the following transforma
tion law for rotationsRPSO(3) holds:

r lm~Rq,t,RX!5 (
m852 l

l

Dm8m
l

~R!r lm8~q,t;X!, ~26!

where RX is used for the rotated initial conditions an
Dm8m

l (R) are Wigner’s generalized spherical harmonics@34#.
Similarly one has

j lm
ak~Rq,t;RX!5 (

k851

3

(
m852 l

l

Rkk8Dm8m
l

~R! j lm8
ak8~q,t;X!.

~27!

The angular brackets in Eqs.~15!, ~16!, and~19! denote the
canonical average over the initial conditionsX. By assump-
tion it is H(RX)[H(X). Therefore, Eqs.~26! and ~27! im-
ply the transformation law for the correlators

Slm; l 8m8~Rq,t !5 (
m1 ,m18

Dm1m
l* ~R!Dm

18m8
l 8 ~R!Slm1 ; l 8m

18
~q,t !

~28!

and
-

e

Jlm; l 8m8
ak;a8k

~Rq,t !5 (
k1 ,k18

(
m1 ,m18

Rkk1
Rk8k

18
Dm1m

l* ~R!Dm
18m8

l 8 ~R!

3J
lm1 ; l 8m

18

ak1 ;a8k18~q,t !. ~29!

What remains is the behavior underinversion P. Since
Ylm(PV)5(21)lYlm(V), it follows from Eqs. ~16! and
~19! that

Slm; l 8m8~2q,t !5~21! l 1 l 8Slm; l 8m8~q,t ! ~30!

and

Jlm; l 8m8
ak;a8k8~2q,t !5~21! l 1 l 8«a«a8Jlm; l 8m8

ak;a8k8~q,t !, ~31!

respectively, where«T521 and«R51.
It is more convenient to represent these correlators in

q frame @34#, i.e., in the laboratory frame whereq5q0
[(0,0,q) and q5uqu. For rotationsR3~f![R~f,u50,x50!
around thez axis, it is Dm8m

l (R)5e2 imfdmm8 @34#. In that
case we obtain, from Eq.~28!,

Slm; l 8m8~q0 ,t !5ei ~m2m8!fSlm; l 8m8~q0 ,t !,

which must hold for allf. Therefore,Slm,l 8m8(q0 ,t) must be
diagonal in m andm8:

Slm,l 8m8~q0 ,t ![Sll 8
m

~q,t !dmm8. ~32!

For the current density correlator this is true f

Jlm; l 8m8
a3;a83 (q0 ,t) only.

Let us now consider the rotationR2[R(0,u5p,0),
which transforms q0 into 2q0 . With Dm8m

l (R2)5

(21)l 1mdm,2m8 @34#, from ~28! we obtain

Slm; l 8m8~2q0 ,t !5~21! l 1 l 81m1m8Sl 2m; l 82m8~q0 ,t !,
~33!

which together with Eqs.~25! and ~32! yields

„Sll 8
m

~q,t !…* 5Sll 8
m

~q,t !, ~34!

i.e., the correlatorSll 8
m (q,t) is real.

Finally, it follows from Eqs.~25!, ~34!, and ~33! for q
5q0 ,

Sll 8
m

~q,t !5Sll 8
2m

~q,t !. ~35!

Hence for givenq,l and l 8 the independent density correla
tors belong to the helicitym50,1, . . . ,min(l,l8).

III. MODE-COUPLING APPROACH

The correlatorsSlm,l 8m8(q,t) are of experimental and the
oretical interest. Forl 5 l 850 it describes the dynamics o
the TDOF which can be measured by neutron scattering
the molecules possess a permanent dipolar moment, the
relator with l 5 l 851 contains information which can be ob
tained from dielectric measurements andl 5 l 852 is related
to the orientational contribution to light scattering.
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In the following we will apply the Mori-Zwanzig projec
tion formalism@36,37# in order to derive an equation of mo
tion for Slm,l 8m8(q,t). The following shorthand notation i
convenient: (q,l ,m)50, (q,l 8,m8)508, (qi ,l i ,mi)5 i , and
( l ,m)5l. The use of this formalism requires the specific
tion of the slow variables. Because we study glassy dyn
ics, it is obvious thatdr lm(q)[dr(0) is a slow variable.
Then it is natural to choosedṙ(0) as well. Whereas this
works for simpleliquids, leading to the MCT equations~2!,
it does not formolecular liquids. The reason is as follows
one does not expect the long-time relaxation~e.g., the struc-
tural relaxation! to show inertia effects. Consequently, th
MCT equations which yield the long-time dynamics shou
not involve M and I . As we will see below, the simples
choice ~cf. Ref. @25#! fulfilling this requirement is to take
besidesdr(0), the ‘‘longitudinal’’ translational and rota-
tional current densities

j a~0![ j lm
a ~q!5

1

ql
a~q!

~ q̂aja! lm~q! ~36!

for a5T andR, where

ql
a~q!5 H q,

Al ~ l 11!,
a5T
a5R. ~37!

A more general option, to project on each Cartesian com
nent j ak(0) for a5T,R and k51,2,3 ~see, e.g., Ref.@38#!
which generates acoupling between thelongitudinal and
transversalcomponents of the current density, is under
vestigation. The energy density« lm(q) will be omitted as a
slow variable, as it was done for a simple liquid@1#.

Now we introduce the following twoprojectors:

Pr5
1

N (
ll8

udr~0!&S21~0,08!^dr~08!* u ~38!

and

Pj5
1

N (
ll8

(
aa8

u j a~0!&J21~0a;08a8!^ j a8~08!* u. ~39!

The matrixJ[„J(0a;08a8)… is given by

Jlm; l 8m8
aa8 ~q!5

1

N
^ j lm

a ~q!* j l 8m8
a8 ~q!&

5
kT

I a
d l l 8dmm8daa8 , ~40!

where the latter equality is proven in Appendix A.I a is the
unified notation

I a5 H M ,
I ,

a5T
a5R. ~41!

Making use of these projectors, it is straightforward to der
the two-step continued fraction for the Laplace transform

Ŝ~q,z![„Ŝ~0,08;z!…5 i E
0

`

dt S~q,t !eizt, Im z.0,

~42!
-
-

o-

-

e

of the density correlator:

Ŝ~q,z!52@z11K̂ ~q,z!S21~q!#21S~q!, ~43!

with

K̂ lm; l 8m8~q,z!5(
aa8

ql
a~q!ql 8

a8~q!k̂lm; l 8m8
aa8 ~q,z!. ~44!

For the momentum density correlator the next projection s
yields

k̂~q,z!52@zJ211J21M̂ ~q,z!J21#21, ~45!

where the matrix elements of thememory kernelM̂ (q,z) are
given by

M̂ lm; l 8m8
aa8 ~q,z!5

1

N KLj lm
a ~q!* UQ 1

QLQ2z
QULj l 8m8

a8 ~q!L .

~46!

Here, Q512P512(Pr1Pj ) projects perpendicularly to
dr, j T and j R. These equations are still exact. To obtain
closed set of equations we apply amode-coupling approxi-
mation for the fluctuating forceuFlm

a (q)&5QuLj lm
a (q)&.

Since the interaction between the molecules is assumed t
pairwise, we projectuFlm

a (q)& onto a product oftwo density
modes. This is done in a close relationship to the case
simple liquid which was clearly discussed by Go¨tze @1#. Fol-
lowing Ref. @1#, we define the projector on pairs of modes

P5(
118

(
228

udr~1!dr~2!&g~12u1828!^dr~18!* dr* ~28!u,

~47!

where the normalization matrixg must fulfill

(
1929

g~12u1929!^dr~19!* dr~29!* udr~18!dr~28!&

5d~12u1828!, ~48!

with the symmetrized Kronecker delta

d~12u1828!5 1
2 @d~1,18!d~2,28!1d~1,28!d~2,18!#,

~49!

and the obvious meaningd(1,18)[dq1q1
,d l 1l 1

,dm1m1
. Using

the approximations

~ i! uFa~0!&'PuFa~0!&, ~50!

~ ii ! ^dr~1!* dr~2!* uQe2 iQLQtQudr~18!dr~28!&

'N2@S~1,18;t !S~2,28;t !1~18↔28!#, ~51!

~ iii ! g~12u1828!'
1

4N2 @S21~1,18!S21~2,28!

1~18↔28!#, ~52!

we obtain
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Maa8~0,08;t !'
1

2N3 (
121828

(
343848

S21~1,18!S21~2,28!

3S21~3,38!S21~4,48!^Lj a~0!*

3Qudr~1!dr~2!&^dr* ~38!dr* ~48!

3uQLj a~08!&S~18,3;t !S~284;t !. ~53!

In Appendixes B and C it is shown that

^Lj l
a~q!* Qudrl1

~q1!drl2
~q2!&'2

r0

4p
Ndq11q2 ,q

kT

I a

3 (
l19l29l9

@ua~qluq1l19 ;q2l29!cl
19l9~q1!Sl9l1

~q1!

3Sl
29l2

~q1!1~1↔2!#, ~54!

with

ua~qluq1l1 ;q2l2!5bl 1l 2l
a ~q•q1!C~ l 1l 2l ;m1m2m!

~55!

and

bl 1l 2l
a ~q•q1!

5 i l 11 l 22 l S ~2l 111!~2l 211!

2l 11 D 1/2
1
2 @11~21! l 11 l 21 l #

3H 1

q
~q•q1!C~ l 1l 2l ;000!, a5T

Al 1~ l 111!C~ l 1l 2l ;101!, a5R,

~56!

whereC( l 1l 2l ;m1m2m) are the Clebsch-Gordan coefficient
The direct correlation function matrix„cll8(q)…5c(q) is re-
lated to the static correlatorS~q! by

S~q!5F12
r0

4p
c~q!G21

, ~57!

and r05N/V is the average number density. The read
should note that the prefactor (kT/I a)(kT/I a8) which ap-
pears forMaa8 (0,08;t) after substitution of Eq.~54! into Eq.
~53!, is just cancelled in the combinationJ21M (q,t)J21

@which entersk̂(q,z) as Laplace transform# due to Eq.~40!.
Therefore, inertia effects enter only via the first termzJ21 of
k̂. This term, however, can be neglected in the asympt
time regimet→` which corresponds toz→0 @1–3#. It can
easily be verified that this cancellation does not occu
dr~0! anddṙ(0) are used as slow variables. Putting all th
together we arrive at the mode coupling expression for
slow partm(q,t) of J21M (q,t)J21,
r

ic

if

e

@„J21M ~q,t !J21
…ll
aa8#slow

'mll8
aa8~q,t !

5
1

2N (
q1q2

(
l1l18

l2l28

Vaa8~qll8uq1l1l18 ;q2l2l28!

3Sl1l
18
~q1 ,t !Sl1l

18
~q2 ,t !, ~58!

with the vertices

Vaa8~qll8uq1l1l18 ;q2l2l28!

5S r0

4p D 2S (
l9

va~qluq1l1 ;q2l2 ;l9!D
3S (

l-
va8~ql8uq1l18 ;q2l28 ;l-!D *

,

~59!

where

va~qluq1l1 ;q2l2 ;l9!5ua~qluq1l9;q2l2!cl9l1~q1!

1ua~qluq2l9;q1l1!cl9l2~q2!.

~60!

Neglecting the regular part@„J21M (q,t)J21
…ll8
aa8# reg, Eqs.

~43!–~45! and ~58!–~60!, together with Eqs.~40!, ~55!, and
~56!, are closed-set equations for the density correla
Slm,l 8m8(q,t), with the static correlatorsSlm,l 8m8(q) as input
quantities.

Note that the vertices are neither positive nor real. Th
behavior forq→0 is of interest. In Appendix D it will be
proven that

(
l9

va~q,luq1l1 ;q2l2 ;l9!5 HO~q!,
O~1!,

a5T,l5~0,0!

otherwise
~61!

implies

VTT~q,00,00uq1l1l18 ;q2l2l28!5O~q2!,

VTR~q,00,l 8m8uq1l1l18 ;q2l2l28!5O~q!,

VRT~q,lm,00uq1l1l18 ;q2l2l28!5O~q!, ~62!

and all others are equal toO(1). This behavior relates to the
fact thatj lm

T (q), in contrast toj lm
R (q), is a conserved quantity

for q50 and l5(0,0). For l5l85l15l185l25l28
5(0,0) the vertexVTT reduces to that for the simple liqui
@1#, as it should be.

Let us finally comment on the validity of the reductio
theorem, which was proven forsimpleliquids by Götze @39#.
The physical consequences of this theorem are probably
most important predictions of the MCT approach. It sta
that there exists a time scalets(T) on which theq and t
dependences of the density correlator factorizes, and tha
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2938 56ROLF SCHILLING AND THOMAS SCHEIDSTEGER
t dependence is given by a correlatorG(t) which depends on
the exponent parameterl only. l follows from the static
correlatorS(q) for T5Tc , i.e., l can be obtained from the
microscopic information. The condition for the reductio
theorem is that the bifurcation~of a glassy phase from th
liquid! is of codimension 1. A sufficient condition for this i
the positivity of the vertices. As can be seen from Eq.~59!,
this is not generally true formolecularliquids. However, in
the diagonalization approximation, which will be used
Sec. IV, the vertices become real and positive. Despite
different structure of the MCT equations forl .0 @cf. Eq.
~78!#, one can still prove that the reduction theorem is va
and thatG(t) fulfills the same ‘‘universal’’ equation derived
by Götze @39# for simple liquids. The only difference is tha
the microscopic calculation ofl also involves the static den
sity correlatorsSlm,lm(q) for l>0.

IV. MCT FOR DIPOLAR HARD SPHERES

In this section we will apply the MCT equations whic
were derived in Sec. III to a system of dipolar hard sphe
~DHS’s!. This system consists of hard spheres with diame
d and a dipolar momentm. Besides the hard sphere intera
tion Vhs($xn%), there is the dipolar interaction

Vdip~$xn%,$Vn%!5m2 (
nÞn8

uxn2xn8u
25@~xn2xn8!

2~enen8!

23„~xn2xn8!en…„~xn2xn8!en8…#, ~63!

wherem5umu anden5mum, the unit vector pointing in the
direction of Vn . We choose this system for two reason
First, experimental results forSq(t) for neutral colloidal sys-
tems, which can be well approximated by hard spheres, h
shown a particularly good agreement with the predictions
the idealized version of the MCT@40,41#. Therefore, our
MCT approach, which includes ODOF, may be a good
proximation for DHS’s, too. Second, for the direct corre
tion functionc(x,V,V8) approximate, analytical expression
exist such that the input quantities of the MCT equations
known. Furthermore, the invariance of the potential un
mn→2mn for all n yields an additional restriction fo
Slm,l 8m8(q,t), which is

Slm,l 8m8~q,t !5 H0,
Þ0,

l 1 l 8odd
l 1 l 8even. ~64!

Let us now discussc(x,V,V8). Wertheim@42# showed that
within the mean spherical approximation~MSA! ~cf. also
Ref. @34#! the calculation ofc(x,V,V8) for dipolar hard
spheres can be reduced to the case of simple hard sphe
which c(x) is known, e.g., in the Percus-Yevick approxim
tion. Writing

c~x,V,V8!5cs~r !1cD~r !D~e,e8!1cD~r !D~ex ,e,e8!,
~65!

with

D~e,e8!5e•e8 ~66!

D~ex ,e,e8!53~exe
T!~exe8

T!2~e•e8T! ~67!
e

s
r

.

ve
f

-
-

e
r

for

where r 5uxu, ex5x/r and e,e8 are unit vectors pointing in
the direction ofV, V8, the r -dependent functions are give
by @42#

cs~r !5c0~r ;w!,

cD~r !52k@c0~r ;2kw!2c0~r ;2kw!#, ~68!

cD~r !5cD
~0!~r !23r 23E

0

r

dr8r 82cD
~0!~r 8!,

where

cD
~0!~r !5k@2c0~r ;2kw!1c0~r ;2kw!# ~69!

and the parameterk5k(T,w) follows from

2c0~2kw!1c0~2kw!58wbm2/d3. ~70!

Here the two control parameterstemperature T(b51/kT)
and thepacking fractionw5pr0d3/6 appear. The quantity
bm2/d3[1/T* is the ratio of the characteristic dipolar en
ergy m2/d3 and the thermal energy. HenceT* is a dimen-
sionless temperature which is a measure of the dipolar
ergy for givenT. The r dependence ofc0(r ) in the Percus-
Yevick approximation is given by@34#

c0~r ;w!5 H c0~w!1c1~w!~r /d!1c3~w!~r /d!3, r ,d
0, r .d,

~71!

with

c0~w!52~112w!2/~12w!4,

c1~w!56w~11w/2!2/~12w!4,

c3~w!5wc0~w!/2. ~72!

The calculation of

clm; l 8m8~q!5 i l 82 lE d3xE d2VE d2V8c~x,V,V8!

3e2 iq•xYlm* ~V!Yl 8m8~V8! ~73!

is straightforward. As shown in Sec. II, it is convenient
use theq frame. The explicit expressions forcll 8

m (q) are
presented in Appendix E. From this appendix it follows th

cll 8
m

~q!5cl
m~q!d l l 8 ~74!

andcl
m(q)[0 for l>2. Although this does not imply that th

vertices vanish forl>2 and l 8>2, we will restrict the l
values to 0 and 1. Due to this restriction and Eq.~64!, the
correlators become diagonal~in the q frame!,

Sll 8
m

~q,t !5Sl
m~q,t !d l l 8 , ~75!

for l 50,1 andl 850,1. Consequently, only three independe
correlatorsS0

0(q,t), S1
0(q,t) and S1

1(q,t) exist. Because the
inclusion of ODOF’s has made the MCT equations mu
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FIG. 1. The phase diagram for the liquid an
glassy phases of a system of dipolar hard sphe
w and T* denote the packing fraction and th
reduced temperatureT* 5kTd3/m2, respectively.
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more involved compared to simple liquids, we think that th
restriction is a reasonable starting point.

We will restrict the discussion of the MCT equations
the nonergodicity parameter

f l
m~q!5 lim

t→`

Sl
m~q,t !/Sl

m~q!. ~76!

For this the memory kernelM (q,t) is also transformed to the
q frame. Then,f l

m(q) is the solution of

f 0
0~q!

12 f 0
0~q!

5~FT!0
0~q;$ f l

m%! ~77!

and

f 1
m

12 f 1
m 5F 1

~FT!1
m~q;$ f l

m%!
1

1

~FR!1
m~q;$ f l

m%!G
21

~78!

for m50 and 1. Here we performed one moreapproximation
which is the diagonalization of the memory kernel with r
spect toa anda8. Due to this, the vertices becomereal and
non-negative. The reader should not confuse the supersc
T with temperature. The functionals (Fa) l

m(q;$ f l
m%) follow

from mlm; l 8m8
aa (q,t) after transformation to theq frame, and

are of the form

~Fa! l
m~q;$ f l

m%!5E
0

`

dq1E
uq2q1u

q1q1
dq2~Ka! l

m~q,q1 ,q2 ;$ f l
m%!,

with

~KT!0
0~q,q1 ,q2 ;$ f l

m%!5~V00,00
T !0

0~q,q1 ,q2! f 0
0~q1! f 0

0~q2!

1~V11,10
T !0

0~q,q1 ,q2!@ f 1
1~q1! f 1

0~q2!

1 f 1
1~q2! f 1

0~q1!#

1~V10,10
T !0

0~q,q1 ,q2! f 1
0~q1! f 1

0~q2!

1~V11,11
T !0

0~q,q1 ,q2! f 1
1~q1! f 1

1~q2!

~79!
t

and

~Ka!1
m~q,q1 ,q2 ;$ f l

m%!5~V00,10
a !1

m~q,q1 ,q2!@ f 0
0~q1! f 1

0~q2!

1 f 0
0~q2! f 1

0~q1!#

1~V00,11
a !1

m~q,q1 ,q2!@ f 0
0~q1! f 1

1~q2!

1 f 0
0~q2! f 1

1~q1!#. ~80!

The reduced vertices (Vl 1m1;l 2m2

a ) l
m are obtained from Eqs

~59!, ~60!, ~55!, and~56!. We do not present them explicitly
but discuss qualitatively theirw andT dependence. For this i
is important to notice that (Vl 1m1;l 2m2

a ) l
m involves

cl 1

m1(q1)cl 2

m2(q2). Fixing w(0,w,1) one finds from Eqs.

~68!–~73! that

c0
0~q;w,T!→c0

0~q;w!Þ0,
~81!

c1
m~q;w,T!→0

for T (or T* )→`. Therefore, for T5` the functional
(FT)0

0 reduces to that for simple hard spheres, as is expec
In this case there is a dynamic transition~type B! at a critical
packing fraction wc>0.51– 0.52 @43–45# such that f (q)
[ f 0

0(q).0 for w>wc , and f 1
m(q)[0 otherwise.

To determine the phase diagram we have solved num
cally Eqs.~77!–~80! for given w andT. Figure 1 represents
the result. There are two phase boundaries where a typ
transition ~solid line! and a type-A transition~dashed line!
take place, respectively. Three different transition scena
are possible: forT1* >0.32,T* <` the TDOF freeze atwc

>0.52 into a nonergodic phase~type B!, whereas the ODOF
remains ergodic for allw. Note thatT1* is the value on the
type-A transition line forwRCP50.64, the packing fraction
for random close packing. Since larger values thanwRCP are
unphysical, we have usedwRCP as a cutoff. In addition we
stress that the accuracy ofT1* should not be overestimated
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FIG. 2. The critical nonergodicity paramete
~a! and the static correlator~b! for l 50, m50
and three different points for (T* ,w) on the criti-
cal line wc

B(T) as a function ofy5qd.
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because the Percus-Yevick approximation for hard sph
does not describe correctly the singularity which is expec
for w5wRCP. Hence this approximation becomes worse
“approachingwRCP. If T2* '0.13<T* <T1* , the same hap-
pens for the TDOF as before, but by a further increase ow
the ODOF freeze via a type-A transition at the critical li
wc

A(T) ~dashed line!. Since the determination of the locatio
of the critical line was rather computer time consuming,
were not able to locateT2* better than about 10% due to th
flatness of the critical lines in the vicinity ofT2* . For T*
,T2* , both TDOF’s and ODOF’s freeze simultaneously
the critical linewc

B(T) ~type B! ~solid line for T* ,T2* !.
Figures 2~a!, 3~a!, and 4~a! represent the critical noner

godicity parametersf l
m,c(y), and Figs. 2~b!, 3~b!, and 4~b!,

corresponding static correlatorsSl
m(y) for three different

points onwc
B(T) for T* ,T2* . Comparison of both sets o

figures shows that theq dependence~y dependence! of
f l

m,c is in phase with theq dependence ofSl
m . Hence we find

a similar behavior for (l ,m)Þ(0,0) as already found fo
es
d

y

e

t

simple liquids, i.e., for (l ,m)5(0,0) @1#. Furthermore, we
point out the strongm dependence off 1

m,c(y), even fory
50. Since the form factorsf l

m,c(y) increase uniformly when
moving onwc

B(T) toward T→0, the TDOF’s and ODOF’s
become more arrested in that case.

In dielectric spectroscopy information on the rotationa
invariant correlator

S1~q,t !5 (
m521

1

S1
m~q,t ! ~82!

for q50 is obtained. The corresponding nonergodicity p
rameterf 1(q) follows from

f 1~q!5 lim
t→`

(
m521

1

S1
m~q,t !

(
m521

1

S1
m~q!

. ~83!
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FIG. 3. Same as Fig. 2, but forl 51, m50.
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f 1
c(q) is presented in Fig. 5 for three different points o

wc
B(T) for T* ,T2* . f 1

c(q) gives the strength of thea relax-
ation for T.Tc(w) ~w fixed!, i.e., the area under thea peak

of the imaginary partx l 51
(0)9(q,v) of the corresponding sus

ceptibility x l 51
(0) (q,v) as a function oflnv is f 1

c(q) @1#. The
superscript~0! indicates the susceptibility~for l 51! with
respect to theexternalelectric field. Therefore, 12 f 1

c(q) is a
measure for the remaining spectrum~minimum and micro-
scopic or Boson peak! due to a sum rule@1#. Since 1
2 f 1

c(q) is rather small compared to 12 f 0
c(q) for q50 ~at

least for the two lowest temperatures shown in Fig. 5! the
minimum between thea peak and the microscopic or Boso

peak might be rather shallow forx l 51
(0)9(0,v) compared to

x l 509 (0,v) ~see also the discussion of that point in Sec. V!.
In contrast tox l 51

(0) (q50,v), it is the dielectric function
«(q50,v) which is directly accessible in a dielectric expe
ment. Its~normalized! imaginary part«9(q50,v)[«9(v) is
given by @33,46#:
«9~v!5 lim
q→0

x11
~0!9~qe3 ,v!5 lim

q→0
x22

~0!9~qe3 ,v!, ~84!

where„x i j
(0)(q,v)…( i , j 51,2,3) is the~Cartesian! susceptibil-

ity tensor~normalized with respect to the static susceptib
ity!. Due to the long-range character of the dipolar inter
tions it is

lim
q→0

x33
~0!9~qe3 ,v!Þ lim

q→0
x11

~0!9~qe3 ,v!. ~85!

Making use of the fluctuation dissipation theorem and
relationship betweenx i j

(0) and (x (0))1
m , one obtains

«9~v!5~x~0!!1
19~q50,v!5 1

2 v lim
q→0

S̃1
1~q,v!/S1

1~q!,

~86!

where S̃l
m(q,v) is the Fourier transform ofSl

m(q,t), and

(x (0)) l
m9(q,v) the imaginary part of the corresponding~nor-

malized! susceptibility.
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FIG. 4. Same as Fig. 2, but forl 51, m51.
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The reader should note that inequality~85! implies that
S̃1

m(0,v) and thereforeS1
m(0,t), too, depends onm. This can

be observed fort50 from Figs. 3~b! and 4~b! and can be
proven with the explicit result forcl

m(q) in Appendix E. A
similar relationship to Eq.~86! holds for the imaginary par
k9(qe3 ,v) of the compressibility

k9~qe3 ,v!5x0
09~qe3 ,v!5 1

2 vS̃0
0~q,v!/S0

0~q!. ~87!

Again, the area under thea peak ofx l
m9(qe3 ,v) as a func-

tion of lnv is about f l
m,c(q). From Figs. 2~a! and 4~a! we

obtain

f 1
1,c~q50!. f 0

0,c~q5q1!> f 0
0,c~q! ~88!

for the three points on the critical linehc
B(T). q1 is the

position of the first maximum ofS0
0(q). For instance, it is

f 1
1,c(q50)'2 f 0

0,c(q5q1) for the point with highest tem-
perature. Therefore, the strength of thea process~normal-
ized to the static susceptibility! obtained from the dielectric
measurement~which is atq50!! is about twice as large a
that which will follow from neutron scattering atq5q1 .

V. DISCUSSION AND CONCLUSIONS

In this paper we presented a generalization of the m
coupling description of the ideal glass transition in simp
liquids to molecular liquids. We considered linear molecu
only. The extension to arbitrary molecules is straightforwa
@47#.

We demonstrated that the choice ofj lm
T (q) and j lm

R (q),
besidesdr lm(q), as slow variables is necessary in order
avoid inertia effects for the long time dynamics~cf. Ref.
@25#!. With the type of approximation we performed for th
static three-point correlator, one ends up with expressions
the vertices of the mode coupling polynomial which are in
close relationship to those for simple liquids@1–3#.

The resulting MCT equations for the nonergodicity p
rameter were solved for a system of dipolar hard sphe
Making use of the static correlators in mean spherical a
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FIG. 5. The rotational invariant non
ergodicity parameterf 1

c for the same (T* ,w) val-
ues as in Fig. 2 as a function ofy5qd.
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Percus-Yevick approximation, and restricting tol 50,1, the
w-T phase diagram was determined. For this we have
assumed diagonality of the memory kernel with respect ta
anda8. Taking alsomll8

RT (q,t) into account, does not chang
the topology of the phase diagram, but shifts the ph
boundaries toward higher temperatures@47#. The main con-
clusion which can be drawn is the existence of three differ
transition scenarios, as follows.

~i! Only the TDOF’s freeze, whereas the ODOF’s rema
‘‘liquid.’’ This happens for allw with wc>0.52<w,wRCP,
provided T1,T<`. In this temperature range there isno
influence of the dipolar interactions. The nonergodicity p
rameterf 0

0(q;w,T) is T independent, and itsq andw depen-
dences are identical to that for the hard sphere system, w
out dipoles.

~ii ! If T2<T<T1 , the TDOF’s freeze first atwc>0.52 via
a type-B transition, and at the critical linewc

A(T) ~the dashed
line in Fig. 1! the ODOF’s freeze by a type-A transition. Th
latter transition corresponds to aspin glass transition@48#, as
was discussed within MCT for Heisenberg spin glasses
Götze and Sjo¨gren @49#.

~iii ! For T,T2 , both TDOF’s and ODOF’s freeze simu
taneously at the critical linewc

B(T). These findings demon
strate a hierarchy for the freezing, i.e., the ODOF’s can ne
freeze before the TDOF’s are frozen. This result becom
obvious from Eq.~80!. Assuming f 0

0(q)[0, it follows that
(Ha)1

m[0, which implies thatf 1
m(q)[0. A freezing of the

ODOF’s alone, could only occur if (Ka)1
m would involve a

term f 1
m(q1) f 1

m(q2). Such a term, however, is forbidden du
to the parity rule which requiresl 1 l 11 l 2 to be even. We
stress that the topology of the phase diagram~cf. Fig. 1! and
in particular the existence of a type-A transition is neither
artifact of the restriction ofl to 0 and 1 nor an artifact of the
approximation of the static three-point correlator@cf. Eq.
~C6!#, but a result of the additional symmetry of dipolar ha
spheres, which is the invariance under the transforma
$mn%→$2mn%. This symmetry implies thatSlm,l 8m8(q,t),

and thereforef lm,l 8m8(q) and Mlm,l 8m8
aa8 (q,t), vanish if l 1 l 8
so

e

t

-

h-

y

er
s

n

n

is odd. Consequently,l and l 8 must be both either even o
odd. Let us symbolically denotef lm,l 8m8(q) by f even(q) and
f odd(q) for l ,l 8 even andl ,l 8 odd, respectively, and similarly

for Mlm,l 8m8
aa8 (q,t). Then the equation forf eveninvolvesMeven

aa8

and that for f odd involves Modd
aa8 only. Taking further into

account that the vertices ofMlm,l 8m8
aa8 vanish forl 1 l 11 l 2 odd

and/or l 81 l 381 l 48 odd @cf. Eq. ~53!#, due to the additional

symmetry, it is easy to prove thatMeven
aa8 @Eq. ~53!# only con-

tains bilinear termsf even(q1) f even(q2) and f odd(q1) f odd(q2),

whereasModd
aa8 only involves @ f even(q1) f odd(q2)1(1↔2)#,

but no termsf odd(q1) f odd(q2) and f even(q1) f even(q2). It is the
absence of these two latter terms which allows for the e
tence of a type-A transition forf odd. This result is in agree-
ment with a rather general treatment of a bilinear mem
kernel, where it has been proven that a type-A transition
only occur if an additional symmetry exists@50#. The struc-

ture of Meven
aa8 and ofModd

aa8 also implies that a freezing of th
TDOF’s ~i.e., l 5 l 850! induces a glass transition for a
f lm,l 8m8 with l and l 8 even. This can happen already at arb
trary high temperatures, providedw.wc . Similarly, if
f l om,l

o8m8 for l o ,l o8 odd freezes, then all ODOF’s withl andl 8

odd will freeze. Therefore, the different transition scenar
described above do not really discriminate between TDO
and ODOF’s, but betweenl ,l 8 even andl ,l 8 odd.

This hierarchy of freezing also points out the differe
role of packing and temperature. Primarily, it is thedense
packingwhich leads to thecage effect@1# and finally to the
freezing of the TDOF’s. The temperature~as far as the den
sity remains constant! seems to play a less important role.

With the behavior of the static correlators forw→0 and
T→0, one can prove that the critical linewc

B(T) doesnot go
to zero at afinite temperature belowT2 . Although an ex-
trapolation of the steep descent ofwc

B(T) depicted in Fig. 1
would suggest the existence of such a finite temperature,
can prove thatwc

B(T)→0 for T→0. In this respect we would
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like to mention that a similar steep descent ofwc
B(T) has

been found by Lai and Chang@51# for a system ofcharged
hard spheres.

The variation of the nonergodicity parametersf l
m,c(q) ~on

the critical type-B line! in phase withSl
m(q) is similar to the

behavior found for simple liquids@1#. Comparison of Figs.
2~a! and 4~a! shows thatf 1

1,c(q50). f 0
0,c(q5q1)> f 0

0,c(q)
for the three different points on the critical linewC

B(T) we
investigated. This implies that the spectral weight of t
‘‘normalized’’ a peak obtained from a macroscopic~i.e., q
50!, dielectric measurement is larger than that from neut
scattering for arbitraryq, at least for these points o
wC

B(T). The reason for this behavior is as follows: compa
son of Figs. 2~b! and 4~b! reveals that thestatic correlator
S1

1(q) is rather structureless, with a well-pronounced ma
mum atq50, whereasS0

0(q) possesses the typical variatio
with q, as known for liquids. It is the fact thatS1

1(q50) is
significantly larger thanS0

0(q) for all q, which makes
f 1

1,c(q50) larger thanf 0
0,c(q). From this, one might con

clude that the minimum between thea peak and the micro-
scopic~or Boson peak! will be less pronounced for dielectri
data than for that from neutron scattering~due to a sum rule
@1#!, provided the spectral line width of the microscopic~or
Boson peak! is about the same in both cases. We are aw
that this argument is rather crude. A quantitative investi
tion of this question will require a solution of the time
dependent MCT equations including the microscopic f
quencies, as it was done recently for a schematic model@52#.
Let us finally mention that the static correlatorS1

1(q) for a
liquid of rigid diatomic molecules with Lennard-Jones inte
actions ~without dipolar interactions! does not exhibit a
maximum atq50 @32# as it is the case for DHS’s. This ma
stress the importance of the dipolar interactions for the c
clusions with respect to the relaxation strength of thea peak
obtained from dielectric spectroscopy.

Since neither experimental nor numerical data are av
able for the dynamics of dipolar hard spheres, it is not p
sible to check the validity of our results. Therefore, it will b
important to investigate our MCT equations for syste
where this information is known.
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APPENDIX A: CALCULATION OF J
l1l2

a1a2
„q…

In this and the following appendixes we will present tec
nical details of our calculations. The crucial steps will
given only. For Eq.~40!, with Eqs.~17!, ~22!, ~36!, and~37!,
we obtain
e

n

-

-

re
-

-

-

il-
-

s

e

t
62

-

Jl1l2

a1a2~q!5
1

N
„ql 1

a1~q!ql 2

a2~q!…21

3 (
n1n2

(
k1k2

^vn1

a1k1~ q̂a1k1rn1
!l1

~q!*

3vn2

a2k2~ q̂a2k2rn2
!l2

~q!&, ~A1!

where we introduced

rn,l~q!5A4p i leiq•xnYlm~Vn!, l5~ l ,m!. ~A2!

Since

^vn1

a1k1vn2

a2k2•••&5^vn1

a1k1vn2

a2k2&^•••&

5
kT

I a1

da1a2
dk1k2

dn1n2
^•••&, ~A3!

it follows that

Jl1l2

a1a2~q!5
1

N
„ql 1

a1~q!ql 2

a1~q!…21da1a2

kT

I a1

3(
n

^~ q̂a1rn!l1
~q!* ~ q̂a1rn!l2

~q!&. ~A4!

Here a comment is in order. To derive Eq.~A3! for a1

5a25R it is important to use the angular velocityvn8 and
the angular momentum operatorL 8 in the body fixed frame
@where L385„R(f,u)L…350# because only then exp(2bH)
factorizes into a kinetic and a potential part where the kine
term only involvesvn8 @34#. After having performed the av
eraging over$vn8% one may transform back to the laborato
fixed frame. Fora5T anda85R, or vice versa, it is obvi-
ous that the correlator must vanish, since^vn1

Tk1vn2

Rk2•••&

5^vn1

Tk1&^vn2

Rk2&^•••&50, due to^vn1

Tk1&50.

Next, we notice that (q̂arn)l1
(q1)* (q̂arn)l2

(q2) trans-

forms underRPO(3) like

exp@2 i ~q12q2!xn#Yl 1m1
* ~Vn!Yl 2m2

~Vn!

5exp@2 i ~q12q2!xn#~21!m1Yl 12m1
~Vn!Yl 2m2

~Vn!.

Therefore, it is

~ q̂arn!l1
~q1!* ~ q̂arn!l2

~q2!

5~21!m1(
l

C~ l 1l 2l ;2m1m2m!al 1l 2l
a ~q1q2!

3A4p~2 i ! le2 i ~q12q2!•xnYlm~Vn!

5~21!m2(
l

C~ l 1l 2l ;2m1m2m!al 1l 2l
a ~q1q2!

3rn,l* ~q12q2!, ~A5!
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where al 1l 2l
a (q1q2), which depends onl 1 , l 2 , l and

(q1•q2) only, takes into account that the left-hand side of E
~A5! is not normalized. With the scalar product

„rn,l~q!,rn,l8~q8!…5
1

4pV E
V
d3xnE d2Vn

3rn,l~q!* rn,l8~q8!

5dq,q8dl,l , ~A6!
.

we immediately obtain, from Eq.~A5!,

al 1l 2l
a ~q1q2!5„C~ l 1l 2l ;000!…21

„~ q̂arn! l 10~q1!

3~ q̂arn! l 20~q2!* ,rn,l0~q12q2!…, ~A7!

where a straightforward calculation, which uses the prod
rule for Ylm @34#, yields, with Eqs.~22!, ~A2!, and~A6!,
al 1l 2l
a ~q1q2!5 i l 1 l 22 l 1S ~2l 111!~2l 211!

2l 11 D 1/2H q1q2C~ l 1l 2l ;000!, a5T

„l 1~ l 111!l 2~ l 211!…1/2~2 1
2 !@C~ l 1l 2l ;1210!1C~ l 1l 2l ;110!#, a5R.

~A8!
e

Equation ~A5! together with Eq.~A8! is the basic result,
which will be used in the following. Since it is

^rn,l~q!&5dq,0dl,0 , ~A9!

with Eqs. ~A5!, ~A8! and C( l 1l 20;m1m20) from Ref. @34#
we obtain that

^~ q̂a1rn!l1
~q!* ~ q̂a1rn!l2

~q!&5dl1 ,l2
„ql 1

a1~q!…2,

~A10!

with ql
a(q) from Eq. ~37!. Substituting Eq.~A10! into Eq.

~A4! finally yields

Jl1l2

a1a2~q!5
kT

I a1

dl1 ,l2
da1 ,a2

~A11!

for all q.

APPENDIX B: CALCULATION OF
ŠLj l

a
„q…* Qzdrl1

„q1…drl2
„q2…‹

Substitution ofQ512P leads to

^Lj l
a~q!* Qudrl1

~q1!drl2
~q2!&

5^Lj l
a~q!* udrl1

~q1!drl2
~q2!&

2^Lj l
a~q!* Pudrl1

~q1!drl2
~q2!&, ~B1!

~i! Let us first calculatêLj l
a(q)* udrl1

(q1)drl2
(q2)&. Be-

causeL is Hermitian, it is

^Lj l
a~q!* udrl1

~q1!drl2
~q2!&

5^ j l
a~q!* u„Ldrl1

~q1!…drl2
~q2!&1~1↔2!

5~ql
a~q!!21(

a1

^~ q̂aja!l~q!* ~ q̂a1ja1!l1
~q1!

3drl2
~q2!&1~1↔2!, ~B2!
where Eqs.~20! and~36! were used. Substitutingj l
a(q) from

Eq. ~17! into Eq. ~B2!, and performing the average over th
velocities~cf. Appendix A! with Eq. ~A2! we obtain

^Lj l
a~q!* udrl1

~q1!drl2
~q2!&

5
kT

I a
~ql

a~q!!21(
n

^~ q̂arn!l~q!* ~ q̂arn!l1
~q1!

3drl2
~q2!&1~1↔2!. ~B3!

Now, Eq. ~A5! can be used. This yields

^Lj l
a~q!* udrl1

~q1!drl2
~q2!&

5
kT

I a
„ql

a~q!…21~21!m1(
l29

C~ l l 1l 29 ;2mm12m29!

3all 1l
29

a
~q•q1!K (

n
rn,l

29
* ~q2q1!drl2

~q2!L 1~1↔2!.

For the next step we notice that

K (
n

rn,l
29

* ~q2q1!drl2
~q2!L 5Ndq,q11q2

Sl
29l2

~q2!,

and with some properties ofC( l 1l 2l ;m1m2m) @34#, we find
that

~21!m1C~ l l 1l 29 ;2mm1m29!all 1l
29

5ql
a~q!bl 1l

29 l
a

~q•q1!C~ l 1l 29l ;m1m29m!,

with bl 1l
29 l

a
(q•q1) from Eq. ~56!. Putting this together we

arrive at
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^Lj l
a~q!* udrl1

~q1!drl2
~q2!&

5Ndq,q11q2

kT

I a
(
l29

bl 1l
29 l

a
~q•q1!

3C~ l 1l 29l ;m1m29m!Sl
29l2

~q2!1~1↔2!

5Ndq,q11q2

kT

I a
(

l19l29l9
bl

19 l
29 l

a
~q•q1!C~ l 19l 29l ;m19m29m!

3„S21~q1!…l
19l9Sl9l1

~q1!Sl
29l2

~q2!1~1↔2!, ~B4!

where we introduced a factordl
19l1

. Replacing the inverse

correlator by means of the Orstein-Zernike equation

„S21~q!…ll85dll82
r0

4p
cll8 ,

it follows that

^Lj l
a~q!* udrl1

~q1!drl2
~q2!&

5Ndq,q11q2

kT

I a H (
l19l29

@bl
19 l

29 l
a

~q•q1!C~ l 19l 29l ;m19m29m!

1~1↔2!#Sl
19l1

~q1!Sl
29l2

~q2!

2
r0

4p (
l19l29l9

@bl
19 l

29 l
a

~q•q1!C~ l 19l 29l ;m19m29m!cl
19l9~q1!

3Sl9l1
~q1!Sl

29l2
~q2!1~1↔2!#J . ~B5!
Substitutingbl
19 l

29 l
a

(q•q1) from Eq. ~56! and making use of

q11q25q ~B6!

and

Al 1~ l 111!C~ l 1l 2l ;101!1Al 2~ l 211!C~ l 1l 2l ;011!

5Al ~ l 11!C~ l 1l 2l ;000!, ~B7!

one can prove by use of the properties ofC( l 1l 2l ;m1m2m)
@34# that

@bl
19 l

29 l
a

~q•q1!C~ l 19l 29l ;m19m29m!1~1↔2!#

5ql
a~q!bl

19 l
29 lC~ l 19l 29l ;m19m29m!, ~B8!

with

bl
19 l

29 l5~2 i ! l i l 191 l 29S ~2l 1911!~2l 2911!

2l 11 D 1/2

C~ l 19l 29l ;000!.

~B9!

~ii ! With P5Pr1Pj from Eqs.~38! and~39! we obtain, for
the second term of Eq.~B1!,
^Lj l
a~q!* Pudrl1

~q1!drl2
~q2!&5

1

N (
l18l28

„S21~q!…l
18l

28
^Lj l

a~q!* udrl
18
~q!&^drl

28
~q!* drl1

~q1!drl2
~q2!&

5
1

N (
l18l28

„S21~q!…l
18l

28(a1

^ j l
a~q!* j

l
18

a1~q!&^drl
28
~q!* drl1

~q1!drl2
~q2!&

5
kT

I a
(
l28

„S21~q!…ll
28
^drl

28
~q!* drl1

~q1!drl2
~q2!&, ~B10!

where we used again the hermiticity ofL and Eqs.~20! and~40!. Unfortunately, the static three-point correlator in Eq.~B10!
cannot be calculated exactly. In Appendix C it will be shown that it can be approximated as follows:

^drl
28
~q!* drl1

~q1!drl2
~q2!&'Ndq,q11q2 (

l19l29l39
bl

19 l
29 l

39
C~ l 19l 29l 39 ;m19m29m39!Sl

28l
39
~q!Sl

19l1
~q1!Sl

29l2
~q2!.

With this, from Eq.~B10! we obtain

^Lj l
a~q!* Pudrl1

~q1!drl2
~q2!&'Ndq,q11q2

kT

I a
(

l19l29
bl

19 l
29 lC~ l 19l 29l ;m19m29m!Sl

19l1
~q1!Sl

29l2
~q2!. ~B11!
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If we use Eq.~B8!, the first term in the curly bracket of Eq.~B5! ~including the prefactor! just cancels the second term~B11!
of ~B1!. What remains for Eq.~B1! is the second term in the curly bracket which coincides with Eq.~54!.

APPENDIX C: APPROXIMATION OF Šdrl1
„q1…* drl2

„q2…drl3
„q3…‹

For simpleliquids, Götze @1# used the factorization:

^dr~q1!* dr~q2!dr~q3!&'Ndq1 ,q21q3
S~q1!S~q2!S~q3! ~C1!

in q space. We require that the approximation of the three-point correlator formolecular liquids should obey the correc
transformation properties and that it reduces to Eq.~C1! for l15l25l35(0,0). We choose the approximation

^drl1
~q1!* drl2

~q2!drl3
~q3!&5~4p!3/2i l 21 l 32 l 1E )

j 51

3

d2V j^dr~q1 ,V1!* dr~q2 ,V2!

3dr~q3 ,V3!&Yl1
* ~V1!Yl2

~V2!Yl3
~V3!

' i l 21 l 32 l 1~4p!3/2~4p/N!2E )
j

~d2V jd
2V j8!E d2V)

j
d~V,V j8!Yl1

* ~V1!Yl2
~V2!Yl3

~V3!

3^dr~q1 ,V1!* dr~q1 ,V18!dr~q2 ,V2!dr~q2 ,V28!* dr~q3 ,V3!dr~q3 ,V38!* &.

Factorization of the six-point correlator

^dr~q1 ,V1!* dr~q1 ,V18!dr~q2 ,V2!dr~q2 ,V28!* dr~q3 ,V3!dr~q3 ,V38!* &

'N3S~q1 ,V1 ,V18!S~q2 ,V2 ,V28!* S~q3 ,V3 ,V38!* dq1 ,q21q3
, ~C2!

where

S~q,V,V8!5
1

N
^dr~q,V!* dr~q,V8!&, ~C3!

and using that

E d2VE d2V8S~q,V,V8!Yl* ~V!Yl8~V8!5
1

4p
i l~2 i ! l 8Sll8~q!, ~C4!

E d2V)
j

d~V,V j8!5~4p!21/2 (
l19l29l2*

bl
19 l

29 l
39
C~ l 19l 29l 39 ;m19m29m39!Yl

19
~V18!Yl

29
* ~V28!Yl

39
* ~V38! ~C5!

leads to

^drl1
~q1!* drl2

~q2!drl3
~q3!&'Ndq,q11q2 (

l19l29l39
bl

19 l
29 l

39
C~ l 19l 29l 39 ;m19m29m39!Sl1l

19
~q1!Sl

29l2
~q2!Sl

39l3
~q3!, ~C6!

which is the result we used in Appendix B. It is easy to prove that Eq.~C6! reduces to Eq.~C1! if l i[(0,0) andl i9
[(0,0), and that it possesses the correct symmetry underRPO(3).

APPENDIX D: VERTICES FOR q ˜0

Due toq5q11q2 , it follows thatq2→2q1 for q→0. Therefore, we may writeq2 as

q25q1~211q•«!, u«u5O~1!. ~D1!

Then we obtain with

cll8~q2!5cll8~2q1!1O~q!5~21! l 1 l 81m1m8c l̄ 8 l̄ ~q1!1O~q!, ~D2!

where Eqs.~24! and ~25! @which also hold forcll8(q)# and l̄5( l ,2m) were used, that
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(
l9

va~q,luq1l1 ;q2l2 ;l9!5(
l9

@bl 9 l 2l
a

~q•q1!C~ l 9l 2l ;m9m2m!cl9l1
~q1!

1~21! l 21 l 91m21m9bl 9 l 1l
a

~2q•q1!C~ l 9l 1l ;m9m1m!c l̄ 2l̄ 9~q1!#1O~q!

5 (
l9~Þl̄2!

bl 9 l 2l
a

~q•q1!C~ l 9l 2l ;m9m2m!cl9l1
~q1!1 (

l9~Þl̄1!

~21! l 21 l 91m21m9bl 9 l 1l
a

~2q•q1!

3C~ l 9l 1l ;m9m1m!c l̄ 2l̄ 9~q1!

1@bl 2l 2l
a ~q•q1!C~ l 2l 2l ;2m2m2m!1~21! l 11 l 21m11m2bl 1l 1l

a ~2q•q1!

3C~ l 1l 1l ;2m1m1m!#c l̄ 2l1
~q1!1O~q!. ~D3!
ts

o
a

For lÞ0 the restricted sum in Eq.~D3! is generically non-
zero. Therefore, it is forlÞ0,

(
l9

va~q,luq1l1 ;q2l2 ;l9!5O~1!. ~D4!

For l5(0,0) the Clebsch-Gordon coefficien
C( l 1l 20;m1m20) are nonzero forl 15 l 2 and m11m250
only. Therefore, both restricted sums in Eq.~D3! do vanish,
and it remains

(
l9

va~q,luq1l1 ;q2l2 ;l9!

5@bl 2l 20
a ~q•q1!C~ l 2l 20;2m2m20!

1~21! l 11 l 21m11m2bl 1l 10
a ~2q•q1!

3C~ l 1l 10;2m1m10!#c l̄ 2l1
~q1!1O~q!

5 HO~q!,
O~ l !,

a5T
a5R, ~D5!

where Eqs.~56! and ~B6! has been used.

APPENDIX E: RESULT FOR cl
m

„q…

The direct correlation functionclm; l 8m8 (q) becomes di-
agonal in theq frame and in the MSA.

clm; l 8m8~q,t!>cl
m~q!d l l 8dmm8 . ~E1!

To calculateclm; l 8m8 (q,t) from Eq. ~73! it is important to
note that we keepqÞ0 and perform the limit volumeV→`
first, and afterwards the limitq→0 can be taken. One has t
be cautious with these two limits due to the long-range ch
acter of the dipolar interactions, which leads to ar 23 decay
for cD(r ) @cf. Eq. ~68!#. As a result we obtain

c0
0~y!516p2d3y26$@24c322c1y2#

1@224c3y1~c012c114c3!y3#siny

1@224c31~2c1112c3!y2

2~c01c11c3!y4#cosy%, ~E2!
r-

c1
0~y!516p2d3y26H @8~cD
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~1!
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~3!22

bm2

d3 D y4GcosyJ ~E3!

and

c1
1~y!516p2d3y26H @8~cD

~3!22cD
~3!!2 2

3 ~cD
~1!24cD

~1!!y2#

1F28~cD
~3!22cD

~3!!y1
1

3 S cD
~0!12cD

~1!14cD
~3!

25cD
~1!27cD

~3!1
bm2

d3 D y3Gsin y1F28~cD
~3!22cD

~1!!

1~ 2
3 cD

~1!14cD
~3!2 8

3 cD
~1!28cD

~3!!y22
1

3 S cD
~0!1cD

~1!

1cD
~3!2cD

~1!2cD
~3!1

bm2

d3 D GcosyJ , ~E4!

wherey5qd is the dimensionless wave number and

cD
~n!52k@cv~2kw!2cv~2kw!#, n50,1,3

cD
~1!5 1

4 k@2c1~2kw!1c1~2kw!#, ~E5!

cD
~3!5 1

2 k@2c3~2kw!1c3~2kw!#.
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