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Mode coupling approach to the ideal glass transition of molecular liquids: Linear molecules
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The mode coupling theoryMCT) for the ideal liquid glass transition, which was worked out $imple
liquids mainly by Gdze, Sjamren, and their co-workers, is extended tmalecularliquid of linear andrigid
molecules. By use of the projection formalism of Zwanzig and Mori an equation of motion is derived for the
correlatorsS, |/ (0,t) of the tensorial one-particle densjiy,(g,t), which contains the orientational degrees
of freedom forl>0. Application of the mode coupling approximation to the memory kernel results into a
closedset of equations fo6, ;.n/(q,t), which requires the static correlatog, ;. (q) as the only input
quantities. The corresponding MCT equations for the nonergodicity paranigters=f, m(ge;) are solved
for a system of dipolar hard spheres by restricting the values forO and 1. Depending on the packing
fraction ¢ and on the temperatuiie three different phases exist: a liquid phase, where translati®@bsDF's)

(I=0) andorientationalODOF'’s) (I =1) degrees of freedom are ergodic, a phase where the TDOF are frozen
into a (nonergodi¢ glassy state, whereas the ODOF’s remain ergodic, and finally a glassy phase where both,
TDOF's and ODOF'’s, are nonergodic. From the nonergodicity paramf:ﬁ(a@ andfi(q) for g=0, we may
conclude that the corresponding relaxation strength oktlpeak of the compressibility can be much smaller
than the corresponding strength of the dielectric functji&1.063-651X97)02409-4

PACS numbgs): 61.20.Lc, 61.25.Em, 61.43.Fs
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The use of mode coupling theo§ICT) more than a

decade ago represents one of the most important steps in t

theoretical description of the glassy dynamics of supercoole . i
liquids: This thgory was mgainlyyw)(grked out byp'ae, g;+q9,=qg due to translational symmetry. The vertices

Sjogren, and their co-workers. For reviews the reader ma)y(q'ql’%) which characterize the coupling between a pair
consult Refs[1-3]. A complementary approach, which is of density modes, depend on the static density correlator
based on fluctuating nonlinear hydrodynamics, was intro2"Y- Therefore(apart fromvg), the dynamics is uniquely
duced later by Das and Mazenko and co-workés]. Both determined by the static correlatﬁg We also mention that
approaches derive a closed set of equations for the timéhe right hand side of Ed2d) is the first term in a polyno-

dependent density correlator forsample liquid mial expansion ofny(t) into products

e summation in Eq(2d) is restricted toq,,q, such that

1 ¢ql(t)--~d>qm(t) with m=2.

Sq(t) =15 (8™ (a,1) op(q)), D

Let us give a brief summary of the results which follow from
Egs. (1) and (2) (for details, see Ref§1-3]). The first im-
portant result is the existence of a critical temperafy¢or

a critical densityp.) at which adynamical transitiontakes
place from an ergodic to a nonergodic phase. This transition
can be interpreted as a glass transition. As an order param-

eter one chooses thnergodicity parameter

where 8p(q,t) =p(q,t) —(p(q,t)) is the fluctuation of the
Fourier-transformed one-particle densjigx,t). Taking the
normalized correlatogpy(t) = S,(1)/S,, with S;=S,(t=0)
the static correlator, the MCT equations are as follows:

. t )
¢q(t>+93¢q(t)+fodt"\"qﬁ—t’)%(t'):o, (23 fq=lim (1) ®
q= arth

t—o0
where(}, is the microscopic frequency:
which vanishes in the ergodic phase, Tor T, and is posi-
2_kT 5 tive for T<T.. f, may change continuouslyype-A transi-
Qq_ﬁ Q3. (2b) tion) or discontinuously(type-B transitiof. Let us restrict
ourselves to the type-B transition, which is relevant for struc-

Separating the fast and slow parts, the memory kevhgk)
can be decomposed as follows:

M (1) =2vg8(t) + Q2my(1), (20
with the bare frictionv, and
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tural glass transitions. Then, in the vicinity ©f, two scal-
ing law regimes occur with time scalésg and 7. For the
a-relaxation regime wheret is of order 7, there exists a
master functionp,(t) such that

bq(t.T) = gt/ 7(T)). (4)
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In the so-calleg3-relaxation regimgnot to be confused with  for glycerol[13], salol[14], CKN [15,6], and OTP[17], no
the B procesy one finds the power-law behavior minimum was found in the dielectric experiments for glyc-
erol[18] and salo[18]. For OTP,s"(w) possesses & peak
[19] such that a minimum exists. But its position is at much
smaller frequencies than the corresponding minimum in
bo(t,T)— o~ tIt,(T) 7%, to<t<t, (5a Kq(w). Increasing the high-frequency range by more than an
an | -/ (T)P, ty<t<rt. (5b)  order of magnitude, Loidl and co-workers very recently
. ) o found a minimum ine”(w) for glycerol[20] and CKN[21].
qufcl(Tc) is the nonergodicity parameter &, andty  \whereas its position is in reasonable agreement for CKN
~(), " is a microscopic time scale. The temperature depenwith the light[16] and neutron scattering dafa5], this is
dence oft, and 7 is given by not the case for glycerol. For Sald2], only evidenceof the
121 existence of a minimum ir”(w) has been found, without
to(T)~|T—T| (63 specifying its position. The status of OTP is still unclear.
This situation, and the fact that most glass formers in
nature aramolecular liquids suggest an extension of MCT to
H(T)~(T-T) 7, T=T, (6b) ~ molecular liquids in order to investigate also the dynamics of
the ODOF and the role of coupling between TDOF's and
with y=(1/2a) + (1/2b). The two positive exponents and ODOF's. Apart from the orientational glass phases of mixed
b which are the scaling exponents of ttritical law (5a) and  crystals[23] for which MCT was worked out by Bostoen and
the von Schweidler law(5b), respectively, follow from the Michel [24], no such MCT approach exists for molecular

and

exponent parametev(0<A<1): liquids. It is the main purpose of our contribution to extend
MCT to a molecular liquid oflinear molecules. A similar

T(1—a))? T(1+Db))? investigation was performed for a single linear molecule in a
T(1-2a) =A= T(1+2Db) () simple liquid by Franosclet al. [25], and for a molecular

liquid using fluctuating nonlinear hydrodynamics by Schmitz
whereT is the gamma function. depends on the vertices at [26]. A short account of part of our work was already given
T.. The scaling laws(4) and (5) only involve quantities in Ref.[27].
which can be deduced if the expliclt dependence of the Of course, there exists a huge literature concerning the
vertices is known. It is this fact which demonstrates theorientational dynamics. For instance, one approach is the use
strength of MCT as a microscopic theory of the glass transiof @ Smoluchowski equation. However, this equation is usu-
tion. The verson described above is called ftealized ally linearized, which may lead to exponential relaxation.
MCT. For more detail the reader is referred to the recent review by

Das and Mazenk§5] discovered that the glass transition Bagchi and Chandr@28]. There is strong numerical evi-
singularity at T, is smeared out due to contributions to dence from molecular dynamics simulations that even OD-
my(t) originating from a coupling to the current density. The OF's do exhlb!t nonexponential relaxayon in the supercooled
same conclusion was found later bym and Sjgren [6] molecular |IQUId[9,29—3a. Another review, by Madden and
The latter authors identified hopping processes to be respoffivelson [33], is recommended as well. There, e.g., a
sible for restoring ergodicity. Another interesting MCT ap- "three-variable” theory is discussed. Using the Mori-
proach was recently given in R¥]. Assuming that detailed Zwanzig formalism, a three-step continued fraction for a cor-
balance holds, it was proven that no sharp transition temtelator is derived where a Markov approximation is per-
perature exists. There was a controversy between the resuf@med for the resulting memory kernel. This approach may
of Refs.[5, 7] and of Ref[6] concerned with the behavior of be reasonable in the weakly supercooled liquid, but its valid-
the a-peak width forq—0, which, however, was recently ity in the strongly supercooled regime is not obvious. Fur-
clarified by Latz and Schmit8]. Despite the necessity to thermore a continued fraction of aald number of steps can
use thisextendedICT, several experimentde.g., Refs[2, ~ hever lead to a glass transition singularity as described by
3]) and numerical investigationg@.g., Refs.[9-12)) have ~MCT [1-3]. _ _
clearly demonstrated the existence of a signature of the glass Therefore, we believe that our extension of MCT to su-
transition singularity and the validity of the power laygs)  Percooled molecular liquids may complement earlier work.
and (5b) for a couple of glass forming systems. Our paper is organized as follows. Section Il presents the

However, it is not quite obvious whether the dielectric Various correlation functions and its symmetry properties.
relaxation results are consistent with the predictions of the'he MCT approach is discussed in its general form for linear
idealized MCT. Since the orientational degrees of freedoninolecules in Sec. Ill and applied to a system of dipolar hard
(ODOF’s), which are probed by dielectric spectroscopy, spheres in Sec. IV. Section V contains a discussion of our
couples to the translational degrees of freed@@FOS’s, results and some conclusions. To avoid too much technical
i.e., to the density fluctuations, MCT predicts for, e.g., thecalculations in the text, several appendices have been added
dipole correlator, a power-law behavior as described by Eqvhere the interested reader may learn more details of the
(5) with the sameexponents. This implies that the imaginary sPecific calculation.
part ky(w) ande”(w) of the compressibility and dielectric
function, respectively, exhibit folf >T, a minimum at the
samefrequencywmin - Whereas«&(w), obtained from light In this section we present the correlations functions which
and neutron scattering experiments, shows a MCT minimunmve will investigate, as well as their symmetry properties. We

I. CORRELATION FUNCTIONS
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consider a system d-linear andrigid molecules with mass The factor @i)I is used for technical convenience, as will be
M and inertia tensok contained in a volum¥'. TDOF’s are ~ S€en below. Substitution of E¢L1) into Eq. (13) yields the
specified by{X,} = (X1,...Xy) and{p,t={p1,....0n), where t€nsorial density modes:

X, andp,=mv, are the center-of-mass position and momen- N

tum of thenth molecule, respectively. For the ODOF one _ ol iq-Xq (1)

may also use a canonical descriptip®5], but here we pim(dt) =4 ngl e im((2a (V). (149
choose{Q,}=(Q4,...,Qn) and{l,}=(l4,...,Iy) as orienta-

tional coordinates, wher®,=(¢,,6,) are the Euler angles Then the generalization of the density correlatd is

of the nth molecule, and,=1(Q,) w, is the corresponding straightforward:

angular momentum. The linear and angular velocities are,
respectively,v, and w,. The third Euler angley,, will be
redundant, due to the cylindrical symmetry of our molecules.
With V({x,},{Q,}) the potential energy, the classical energy

of our molecular system is given by with

N 5PIm(Qat):le(Qut)_<le(Qat)>-

H (0} i A D0} {In}) = Z’ 2M Pt _ITI o)y This correlator vanishes fog=0, (I,m)=(l",m’)=(0,0),

and otherwise it is given by

SIml'm'(q t)= <5p|m(q t)5p|/mr(CI)> (15

+V({Xn} {Qn}), (€S)
T S /(qt)— I*IE <e i19-(Xy(t) = Xn7)
wherel,, is the transposed df, and the(},, dependence df ml
in the laboratory framd< has been made explicit. The cor-
responding quantities in the body fixed fraré are ob- XY Qa(D)Yrm (). (16)
tained from those i by a rotationR(¢,,,6,,). For instance, ) ]
it is For later purposes we also introduce thenslational (o=
T) androtational («=R) current density
=ldR(Qy)l,,  @p=R(Qp) o, 9
jim(a,) =4 E V()Y (Qn(t),  (17)
and
I 0 0 with
=R(Qn)(Q)R™H Q)= 0], (10 Vo), a=T
00 I (D=1 (1), a=R, (18)

where the body fixed frame of thth molecule can be cho- and the corresponding current density correlator
sen such that’ is diagonal.

The most basic quantity for the description of a liquid is  .aka’k’ ok
the time-dependeninicroscopicone-particle density Jimitrme (1) = <J' (a, t)ll’m’(q)>

N

AT ek e
PO, = 2 30— Xn(1)(2n, QD). (AD NS

><eiiq.(xn(t)7)(”,)Y|*m(Qn(t))Yl’m’(Qn’)>

8(Q,0Q") denotes the invariant delta function. For this and (19)
many other details of the theoretical description of fluids
W'”Zj ODOFfWh"éht V‘i‘f'}' be USIT-‘d ';[Tmltjl?holi]:)th(l;s papea éhebwhere e.9.ji%, k=1, 2, and 3 are the Cartesian coordinates
reader is referred to the excellent textboo ray and Gu
bins [34]. Any function f(x,{) can be expa)rgdedleth re- Of jim - pim andjir, are related by theontinuity equation
spect to plane waves and spherical harmonics: _ .

Lpim(0,0=pim(0,D =12 (@)im(aD), (20

*
f(x.Q)= /_ 2 2 (=D)fim(a)e™'® Yim(€2), where/ is the corresponding Liouvillean, and as a shorthand
(12) notation we use the operator
with the coefficients e @ @=T
q - L, a=R, (21)

fm(Q) = \/Eilf dsxf d2Qf(x,Q)e9*Y,(Q). (13 vyith L the Qngulqr momentum operator. Its action on a func-
v tion f,,(q) is defined as follows:
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qkfllm(q), a=T

(aakf Jim(Q) = 2 le f1m(Q) a=R (22
m’=—| mm , ’

where

Ll

I,m

o=+ —m(m=1)1Y28, e,
(23

+
m’—ILI mm’=LI m

3
I,mm’

L =Moym-

Now we discuss the various properties 8f, | m(Q,t).

Similar properties hold fod (%%,

into rotational invariants.
Since the time-dependent quantitig$t), ,(t), etc. fol-

low from the (microscopi¢ Newtonian dynamics for given
initial conditions{x,}, {Q,}, etc., time translation and time
reversal symmetry holds. Taking this into account, it imme-

diately follows from definition(15) that

St m (0.0 =St mrm(aLt), (24)

i.e., the matrixS(q,t) = (S /m(d,t)) is Hermitian On the

other hand, we may use E{.6) and the behavior of,,(2)
under complex conjugation. This yields

S|*m;|rmr(qut):(_1)|+|/+m+mlslfm;|’7m’(_qvt)a
(25)

pim(0,t;X) is a tensor field of rank. Here we also explicitly

included the dependence on the initial conditions which arevhich

(g,t). This discussion is
like that of Blum and Torruell35], who used an expansion

2935

T (RAD= 3 3 RigRuokDhnm(RID} 1 (R)

Ky, k my, ml

aklak

l( 1. (29

Im HE

What remains is the behavior underversion P Since
Yim(PQ)=(—1)'Y,;»(Q), it follows from Egs.(16) and

(19) that

St (== (=D"S (@) (30)
and

Ikl (—a=(—1)'"" e e300 K (qt), (3D

respectively, wheret=—1 andeg=1.

It is more convenient to represent these correlators in the
g frame [34], i.e., in the laboratory frame wherg=qg
=(0,0q) andqg=|q|. For rotationsR;(¢)=R(¢,0=0,y=0)
around thez axis, it is D'm,m(R)ze*im‘f’ﬁmm, [34]. In that
case we obtain, from Ed28),

Slm;l’m’(QOat):ei(mim/)('bSIm;l’m’(QO-t)v

which must hold for alkp. Therefore S, /m/(do,t) must be
diagonalin m andm’:

Slm,l'm’(qut)ESTf(qvt)gmm’- (32)
For the current density correlator this is true for
It (o ) only.

Let us now consider the rotatioRR,=R(0,0=7,0),
transforms gqq into —qp. With D'm,m(R2)=

symbolically denoted b¥. Then, the following transforma- (—1)'*™s,, ., [34], from (28) we obtain

tion law for rotationsRe SO(3) holds:

|
pm(RGLRX)= X D' (R)pym (,t;X),

m' =—|

(26)

where RX is used for the rotated initial conditions and

| . , . .
D, m(R) are Wigner's generalized spherical harmon@4].
Similarly one has

3 |
JXRA,ERXN)= 2 X RueDl (R (g,t:X).
k=1 m'=-I
27

The angular brackets in Egkl5), (16), and(19) denote the
canonical average over the initial conditiods By assump-
tion it is H(RX)=H(X). Therefore, Eqs(26) and (27) im-
ply the transformation law for the correlators

Smtrm(RAD= 2 DiynRID i (R) Sy 1y (A1)

my,my

(28)

and

Simitrm (— o, t)= (=) FMEMG L (dost),
(33)

which together with Eqs(25) and (32) yields

(S (a,0)* =S.(q,1), (34)
i.e., the correlato§,(q,t) is real.
Finally, it follows from Eqgs.(25), (34), and (33) for q

=do,

SH(a,)=S,"(q,t). (35
Hence for giveng,l andl’ the independent density correla-
tors belong to the helicityn=0,1, ... min(,l").

Ill. MODE-COUPLING APPROACH

The correlatorsS, | n/(0,t) are of experimental and the-
oretical interest. Fot=1"=0 it describes the dynamics of
the TDOF which can be measured by neutron scattering. If
the molecules possess a permanent dipolar moment, the cor-
relator withl =1’ =1 contains information which can be ob-
tained from dielectric measurements drdl ' =2 is related
to the orientational contribution to light scattering.
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In the following we will apply the Mori-Zwanzig projec- of the density correlator:
tion formalism[36,37] in order to derive an equation of mo- . .
tion for S, ;'m/(q,t). The following shorthand notation is S(0,2)=—[z1+K(q,2S Xq)] 1(q), (43
convenient: ¢,I,m)=0, (q,I’,m')=0", (qg;,l;,m;)=i, and )
(I,m)=X\. The use of this formalism requires the specifica-With
tion of the slow variables. Because we study glassy dynam-
ics, it is obvious thatdp,,(q)=p(0) is a slow variable. Ko — @ a'paa’ _
Then it is natural to choosép(0) as well. Whereas this Kt (0,2) % WD (DK (©:2). (44
works for simpleliquids, leading to the MCT equationg),
it does not formolecularliquids. The reason is as follows: For the momentum density correlator the next projection step
one does not expect the long-time relaxatiery., the struc-  Yields
tural relaxatiom to show inertia effects. Consequently, the A -
MCT equations which yield the long-time dynamics should k(q,2)=—[23"*+J3"M(q,237 '], (45
not involve M and|. As we will see below, the simplest ) N
choice (cf. Ref. [25]) fulfilling this requirement is to take, Where the matrix elements of timeemory kerneM(q,z) are
besidesdp(0), the “longitudinal” translational and rota- 9iven by
tional current densities

A 1 1 ,
Mimtrm (A:2)= <£iﬁn(Q)* Q QL0—z Qlﬁjﬁmr(q)>.

1
Ta 0 =i — A @ 36
(O =iin(@= ey (@@ (36) 46
for a=T andR. where Here, Q=1—-P=1—-(P,+P;) projects perpendicularly to
' o, jT andjR. These equations are still exact. To obtain a
N a, a=T closed set of equations we applyn@de-coupling approxi-
qr(a)= J(+1), a=R. (37 mation for the fluctuating force|F{ (q))=Q|LjZ (a)).

Since the interaction between the molecules is assumed to be
A more general option, to project on each Cartesian compopairwisg we project|F{%,(q)) onto a product ofwo density
nentj“(0) for «=T,R andk=1,2,3 (see, e.g., Refl38])  modes. This is done in a close relationship to the case of a
which generates @&oupling between thelongitudinal and  simple liquid which was clearly discussed by t@e[1]. Fol-
transversalcomponents of the current density, is under in-lowing Ref.[1], we define the projector on pairs of modes:
vestigation. The energy density,,(q) will be omitted as a
slow variable, as it was done for a simple liquid.

Now we introduce the following twerojectors PZ% % 8p(1)3p(2))9(12]172")(8p(1")* 5p* (2')],
! (47)
P,=— 8p(0))S1(0,0')(5p(0")* 38 o . ,
PN g |8p(0))S™(0,0){8p(0")"] 39 where the normalization matrig must fulfill
and non "\ * "\ * ! !
> 9(12172")(8p(1")* 5p(2")*|3p(1") p(2"))
1 , 1"2”
= Pa -1 N YPRAVAT A%
Pi=Ry 2 2, 11(0)37H(0ai0a’)(j(0)*]. (39 _ 51912, 48
The matrixJ=(J(0a;0'a")) is given by with the symmetrized Kronecker delta
wa! 1 . o 5(12|1’2’)=%[6(1,1’)5(2,2’)+5(1,2’)5(2,1’)],
‘]Im;l'm’(q):N<]Im(q)*J|ImI(Q)> (49)
kT and the obvious meaning(1,1')= 4,0, 01,1, Omym,- Using
-, St Ommt Ouar » (40 the approximations
where the latter equality is proven in Appendix B, is the (i) [F*(0))=PIF(0)), (50
unified notation . _
" . (i) (Sp(1)* 5p(2)*[Qe~'“'Q|dp(1") 8p(2'))
’ a=
'ﬂ:[|, a=R. (41) ~NZ[S(1,1:1)S(2,2 1) +(1'2')], (51)
Making use of these projectors, it is straightforward to derive
the two-step continued fraction for the Laplace transform, (i) g(121'2")~ N2 [S1(1,1)S %2,2)

é(q,z>z(“s<o,cy;z>)=if;dts<q,t>eizt, Im 20, +(1'e27)], (52)
(42 we obtain
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, 1 -1 —1yea'
M @« (0,0l,t)m_g 2 Z 8_1(1,1/)8_1(2,2/) [(‘] M(q!t)‘] ))\)\ ]SIOW
2N™ 13750 sagar Nmaa'(q t)
><S’1(3,3’)S’1(4,4’)<£j (0)* M
1 ! ’ ’
X Qldp(1)p(2))(5p* (3') 6p* (4') =N 2 2, V(AN G oAD)
192 o\ ]
X|QLj0"))YS(1',3;1)S(2'45t). (53 )\;\z
In Appendixes B and C it is shown that szlki(ql't)shﬂi(qz’t)' (58)
with the vertices
E-a * |5 5 A — ﬂ N5 k_T 2
< J)\(q) Q p)\l(ql) p)\Z(QZ)>~ Ar g,:td,.9 Ia \ae (q)\)\/|q1)\1)\5_1q2)\2)\é)
2
n n pO o . . 4
X 2 [u“(aN|aiNT ;02N 2) Carnr(Ar) Sy, (A1) :(E) (E UR(ONIREH PN ))
AN G
X Sy, +(12)], (54) S o o iantiams o |
v ; ; ,
< 1M1, 020
with (59

where
u“(aN|diN ;028 2) =bfY i (a- A1) C(l4lol s mymym) u o ,
(55) vA(QN|daN ;A28 25 M) =U(gN|d1N";d2N2) €y 1 (da)

+U(gN [N 050 1) N 2(Tp).
and (60)

b®, (q-qy) Neglecting the regular pal[t(JflM(q,t)J’l);'f,,]reg, Egs.
re (43)—(45) and (58)—(60), together with Eqs(40), (55), and
(56), are closed-set equations for the density correlator
e (21,4 1)(21,+1) 1/2;[1+(_1)I1+|z+'] Slmy"_,,_(q,t), with the static correlator§,,, |,/ (q) as input
21 +1 2 quantities.
Note that the vertices are neither positive nor real. Their
behavior forg—0 is of interest. In Appendix D it will be
(56) proven that

:||l

1
a(Q'%)C('l'z';OOO), a=T

VIi(I1+1)C(141,1;101), a=R, S e _ 0@, a=TA=(0,0
N v (q!Mql)\lqu)\Za)\ )_ O(l), otherwise
whereC(l41,l;m;m,m) are the Clebsch-Gordan coefficients. (61)
The direct correlation function matric, . (q))=c(q) isre- . i
lated to the static correlat@®(q) by implies

N VTT(9,00,000;X 1A { ;02120 5) =O(g?),

! (57) VTR(G,00)'m’|dsh 1)1 :02h 20 5) = O(),

S(q)=[1—f—ic(q)

RT, /. 1\ —
and po=N/V is the average number density. The reader VE(@Im.00d:hsh1 G2k oA 2) =O(0), (62
should note that the prefactokT/1,)(kT/l,/) which ap-  and all others are equal ©(1). This behavior relates to the
pears foM“®" (0,0;t) after substitution of Eq’54) into Eq.  fact thatj'.(q), in contrast td}}.(q), is a conserved quantity
(59), is just cancelled in the combinatiod *M(q,t)J"*  for q=0 and A=(0,0). For A=\'=A;=N]=A,=\}
[which entersk(q,z) as Laplace transforfrdue to Eq.(40). =(0,0) the verte?'" reduces to that for the simple liquid
Therefore, inertia effects enter only via the first teztdn X of ~ [1], as it should be.
k. This term, however, can be neglected in the asymptotic Let us finally comment on the validity of the reduction
time regimet—c which corresponds ta—0 [1-3]. It can  theorem, which was proven feimpleliquids by Gdze[39].
easily be verified that this cancellation does not occur ifThe physical consequences of this theorem are probably the
5p(0) and 8p(0) are used as slow variables. Putting all thismost important predictions of the MCT approach. It states
together we arrive at the mode coupling expression for theéhat there exists a time scatg(T) on which theq andt
slow partm(q,t) of J"IM(q,t)J 1, dependences of the density correlator factorizes, and that its
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t dependence is given by a correla@®ft) which depends on wherer=|x|, e =x/r ande,e’ are unit vectors pointing in
the exponent parametér only. \ follows from the static the direction of(), (), ther-dependent functions are given
correlatorS(q) for T=T,, i.e.,\ can be obtained from the by [42]

microscopic information. The condition for the reduction

theorem is that the bifurcatiofof a glassy phase from the Cs(r)=co(r;¢),
liguid) is of codimension 1. A sufficient condition for this is
the positivity of the vertices. As can be seen from E&f), Ca(r)=2k[co(r;2xp) —Co(r;—ke)], (68)

this is not generally true fomolecularliquids. However, in

the diagonalization approximation, which will be used in

Sec. IV, the vertices become real and positive. Despite the
different structure of the MCT equations fbr-0 [cf. Eq.

(78)], one can still prove that the reduction theorem is validwhere
and thatG(t) fulfills the same “universal” equation derived

r
cD(r)=c([§’)(r)—3r‘3fodr’r’Zc(DO)(r’),

by Gaze[39] for simple liquids. The only difference is that cO(r)=k[2¢cq(r;2x0)+Co(r;— k)] (69
the microscopic calculation of also involves the static den-
sity correlatorsS;,, () for [=0. and the parametet=«(T, ) follows from

—Co(2k¢) +Co( — k@) =8pBu?ld>. (70

IV. MCT FOR DIPOLAR HARD SPHERES

In this section we will apply the MCT equations which Here the two control parametetemperature 1B=1kT)
were derived in Sec. Il to a system of dipolar hard sphereénd thaepacking fractionp=mp,d*~/6 appear. The quantity
(DHS's). This system consists of hard spheres with diameteu/d”=1/T* is the ratio of the characteristic dipolar en-

d and a dipolar momeny. Besides the hard sphere interac- €rdy #%/d* and the thermal energy. Hend¢ is a dimen-
tion Vid{x,}), there is the dipolar interaction sionless temperature which is a measure of the dipolar en-

ergy for givenT. Ther dependence ofy(r) in the Percus-
B Yevick approximation is given bj34]
Vdip({xn}v{ﬂn})zﬂvz 2 |Xn_Xn’| 5[(Xn_xn’)2(enen’)
n#n’ Co(r i) = col¢) +ci(@)(r/d)+cs(e)(r/d)®,  r<d
3@ e xen], 63 T T(o) 1>, )
where u=|u| ande,= u|u, the unit vector pointing in the
direction of Q,. We choose this system for two reasons.With
First, experimental results fd(t) for neutral colloidal sys-
tems, which can be well approximated by hard spheres, have
shown a particularly good agreement with the predictions of

Cole)=—(1+2¢)%(1—)*,

_ 2 _ 4
the idealized version of the MCT40,41]. Therefore, our Ci(@)=6p(1+¢/2)%(1=¢)",
MCT approach, which includes ODOF, may be a good ap- _
proximation for DHS'’s, too. Second, for the direct correla- C3(¢) = @Col@)/2. (72

tion functionc(x,{2,Q)’) approximate, analytical expressions The calculation of
exist such that the input quantities of the MCT equations are
known. Furthermore, the invariance of the potential under

pn— — py for all n yields an additional restriction for clm_l,m,(q)zi"*'f d3xf dzﬂf d?Q’'c(x,Q,0Q")
Sim.'m (a,t), which is ’

0, I+I'odd Xe XY (Q)Y ) () (73)

m’ ,t = ' 64 . . . A .
Sim.7me (61) #0, I+1’even. 64 is straightforward. As shown in Sec. Il, it is convenient to

use theq frame. The explicit expressions fcmﬂ‘,(q) are

Let us now discuss(x,(2,0"). Wertheim[42] showed that presented in Appendix E. From this appendix it follows that

within the mean spherical approximatidMSA) (cf. also
Ref. [34]) the calculation ofc(x,{,Q") for dipolar hard m N am

spheres can be reduced to the case of simple hard sphere for ¢, (@)=c;(q) by (74
which c(x) is known, e.g., in the Percus-Yevick approxima-

m — . .
tion. Writing andc;"(q)=0 for |=2. Although this does not imply that the

vertices vanish fol=2 and|’'=2, we will restrict thel

c(x, Q.0 )=c(r)+cr(r)A(e,e ) +cn(r)D(e, ), values to 0 and 1. Due to this restriction and Egg), the
( J=en+ea(A(ee)+eol(r)D(e )(65) correlators become diagon@h the g frame),

with S(a,D=5"q,t), (75

A(g€e)=e€ (66) forl=0,1and’'=0,1. Consequently, only three independent
correlatorsS)(q,t), S2(q,t) and Si(q,t) exist. Because the
D(e,ee)=3(ee ) (ee H—(e-eT) (67) inclusion of ODOF’s has made the MCT equations much
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FIG. 1. The phase diagram for the liquid and
glassy phases of a system of dipolar hard spheres.
¢ and T* denote the packing fraction and the
reduced temperatufe* =k Td*/ u?, respectively.
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more involved compared to simple liquids, we think that thisand

restriction is a reasonable starting point.
We will restrict the discussion of the MCT equations to
the nonergodicity parameter
f'(a)=1lim §"(a,)/S"(a). (76)
t—oo

For this the memory kern@ll (q,t) is also transformed to the
q frame. Thenf"(q) is the solution of

6D _ o gm -
1T°fé,(_q)_( Jo(a:{f™)
and
7 -1
1 1 1 78)

=10 | (F)Nadfm (AR

for m=0 and 1. Here we performed one ma@proximation
which is the diagonalization of the memory kernel with re-
spect toa and«’. Due to this, the vertices becomeal and

non-negative The reader should not confuse the superscript

T with temperature. The functionalstt)"(q;{f]"}) follow
from my %, . (q,t) after transformation to thg frame, and
are of the form

m m * q+q1 m m
(F™) (q:{f|})=J dqlf da(K)"(a,d1,02:{f"}),
0 q—a|

with

(KN)8(a,a1,02;{f™) = (V0,000(d,G1,02) (A1) F3(d2)
+(V11109(a,01,92)[ F1(a1) 3(a2)
+11(a2)f(ay)]
+(VIO,HQ?)(CI’%,Q2)f(1)(Q1)fg(Q2)

+(V11105(9,01,02) f1(a1) f1(a2)
(79

(K7(0,01,92;{f") = (V801070 01,92)[ F3(a1) F ()
+13(a2)f2(ay)]
+(Vgo,n)T(q’Chﬂz)[fg(%)fi(%)

+3(ax) f1(a)]. (80)

The reduced verticesV(?lml_|zmz)|m are obtained from Egs.

(59), (60), (55), and(56). We do not present them explicitly,
but discuss qualitatively theis andT dependence. For this it
is important to notice that \(f’lmljzmz){“ involves

clrjl(ql)cr;z(qz). Fixing ¢(0<¢<1) one finds from Egs.
(68)—(73) that

co(d; @, T)—c(q;¢) #0, &1

cf(9;,T)—0

for T (or T*)—o. Therefore, forT=o the functional
(]—'T)g reduces to that for simple hard spheres, as is expected.
In this case there is a dynamic transitigype B) at a critical
packing fraction ¢.=0.51-0.52[43—-45 such thatf(q)
=f5(q)>0 for p=¢., andf(q)=0 otherwise.

To determine the phase diagram we have solved numeri-
cally Egs.(77)—(80) for given ¢ andT. Figure 1 represents
the result. There are two phase boundaries where a type-B
transition (solid line) and a type-A transitioidashed ling
take place, respectively. Three different transition scenarios
are possible: foiff =0.32<T* <« the TDOF freeze ab,.
=0.52 into a nonergodic phasg/pe B), whereas the ODOF
remains ergodic for all. Note thatT} is the value on the
type-A transition line fororcp=0.64, the packing fraction
for random close packing. Since larger values thagp are
unphysical, we have usegicp as a cutoff. In addition we
stress that the accuracy ® should not be overestimated,
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because the Percus-Yevick approximation for hard spheresmple liquids, i.e., for k,m)=(0,0) [1]. Furthermore, we
does not describe correctly the singularity which is expectegboint out the strongn dependence of "°(y), even fory

for o= @rcp. Hence this approximation becomes worse by=0. Since the form factor§™(y) increase uniformly when
“approachingegrcp. If T3 ~0.13<T*<T7 , the same hap- moving on ¢2(T) toward T—0, the TDOF’s and ODOF’s
pens for the TDOF as before, but by a further increase of become more arrested in that case.

the ODOF freeze via a type-A transition at the critical line  In dielectric spectroscopy information on the rotationally
@2(T) (dashed ling Since the determination of the location invariant correlator

of the critical line was rather computer time consuming, we

were not able to locat& better than about 10% due to the ! m

flatness of the critical lines in the vicinity of5 . For T* Sl(q’t):m;_l Si(a.t) (82)
<T3, both TDOF's and ODOF’s freeze simultaneously at

the critical line3(T) (type B) (solid line for T* <T%). for =0 is obtained. The corresponding nonergodicity pa-

Figures 2a), 3(a), and 4a) represent the critical noner- rameterf,(q) follows from
godicity parameter$|™“(y), and Figs. %), 3(b), and 4b),

corresponding static correlatod"(y) for three different !

i B 5 T i > sl
points one.(T) for T*<T; . Comparison of both sets of ey Tt
figures shows that the dependencdy dependence of fi(g)=Im —4. (83
f™¢ is in phase with thel dependence d&". Hence we find tooe S Sh(q)
a similar behavior for I;m)+(0,0) as already found for met. 7t
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FIG. 3. Same as Fig. 2, but fo=1, m=0.
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f‘iB(q) is presented in Fig.. 5 for three different points on e"(w)= Iimxﬁ)"(qe3,w)= |imx(2%)"(qeg,w), (84)
@o(T) for T*<T3 . £{(q) gives the strength of the relax- q—0 q—0

ation forT>T.(¢) (¢ fixed), i.e., the area under the peak here (0)( i J s thel i il
; ; (0)” : . Where(xj;”’(q,w))(i,] =1,2,3) is the(Cartesian susceptibil-
of the imaginary park;-y(d,«) of the corresponding sus ity tensor(normalized with respect to the static susceptibil-

(0) ; ic fC
ceptibility x/= (q"f’) as a function oir_1a_)_|s fi(a) [1]: The ity). Due to the long-range character of the dipolar interac-
superscript(0) indicates the susceptibilityfor 1=1) with tions it is

respect to thexternalelectric field. Therefore, £ f{(q) is a

measure for the remaining spectryminimum and micro- lim x52 (qes, ) # lim ¥\ (qes, w). (89

scopic or Boson peakdue to a sum rulg1]. Since 1 a-0 a-0

—f£5(q) is rather small compared to-1f§(q) for q=0 (at  Making use of the fluctuation dissipation theorem and the

least for the two lowest temperatures shown in Figitie  relationship betweep(i(-o) and (((?)", one obtains

minimum between the: peak and tf:oe)mlcroscopm or Boson s"(w)=()(<°)) (q=0.0) = Lolim S(q,0)/Sq),

peak might be rather shallow foy;2;(0,0) compared to q—0

Xi-0(0,w) (see also the discussion of that point in Set. V (86)
In contrast toX(O) (g=0,w), it is the dielectric function

£(q=0,0) which is directly accessible in a dielectric experi- Where 51 (0,0) is the Fourier transform of"(q,t), and

ment. Its(normalized imaginary part”(q=0,0)=¢"(w) is ()(‘0))I (g,w) the imaginary part of the correspondifrgpr-

given by[33,44]: malized susceptibility.
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50.0

FIG. 4. Same as Fig. 2, but foe=1, m=1.
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_ The reader should note that inequali85) implies that
S7'(0,w) and therefores'(0t), too, depends om. This can
be observed fot=0 from Figs. 3b) and 4b) and can be
proven with the explicit result foc"(q) in Appendix E. A

similar relationship to Eq(86) holds for the imaginary part

«"(qe;,w) of the compressibility

K"(qes,0)=x3 (qes, ) =2 0Sy(q,w)/SY(q). (87)

Again, the area under the peak ofx{“"(qeg,w) as a func-

tion of Inw is aboutf™°(q). From
obtain

Figs. 2a) and 4a) we

f1°(q=0)>13%(q=q,)=13%q) (88)

for the three points on the critical ling2(T). g, is the

position of the first maximum osg(q). For instance, it is
f1¢(q=0)~23°(q=q,) for the point with highest tem-

perature. Therefore, the strength

ized to the static susceptibilityobtained from the dielectric

of theprocess(normal-

50.0

measurementwhich is atq=0!) is about twice as large as
that which will follow from neutron scattering a=q; .

V. DISCUSSION AND CONCLUSIONS

In this paper we presented a generalization of the mode
coupling description of the ideal glass transition in simple
liquids to molecular liquids. We considered linear molecules
only. The extension to arbitrary molecules is straightforward
[47].

We demonstrated that the choice jdf,(q) and j{.(q),
besidesdp,»(q), as slow variables is necessary in order to
avoid inertia effects for the long time dynami¢sf. Ref.
[25]). With the type of approximation we performed for the
static three-point correlator, one ends up with expressions for
the vertices of the mode coupling polynomial which are in a
close relationship to those for simple liquip-3].

The resulting MCT equations for the nonergodicity pa-
rameter were solved for a system of dipolar hard spheres.
Making use of the static correlators in mean spherical and
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Percus-Yevick approximation, and restrictinglte 0,1, the is odd. Consequentlyl, and|l’ must be both either even or
¢-T phase diagram was determined. For this we have alsodd. Let us symbolically denotg, ;. (0) by feyefd) and
assumed diagonality of the memory kernel with respeet to f,4(q) forl,I’ even and,l’ odd, respectively, and similarly

anda’. Taking alsam’’,(q,t) into account, does not change for ani;'m/(q-t)- Then the equation fofiy,eninvolvesM e
the topology of the phase diagram, but shifts the phasgnd that forf
boundaries toward higher temperatufég]. The main con- p
clusion which can be drawn is the existence of three differengccount that the vertices ", ., vanish forl +1,+1, odd

transition scenarios, as follows. and/orl’+15+1, odd [cf. Eq. (53)], due to the additional

_ (i)_ Only the TDOF's freeze, whereas the ODOF's remai”symmetry, it is easy to prove thMeve’n[Eq' (53] only con-
“liquid.” This happens for all¢ with ¢.=0.52< ¢<@Rrcp,

provided T;<T<w. In this temperature range there rie tains bilinear term evedd1)feved dz) and foud Ga) foud Ga).

influence of the dipolar interactions. The nonergodicity pa-VhereasMggq only involves [ fevedda) foudd2) + (1 2)],
rameterf)(q; ¢, T) is T independent, and itg and ¢ depen- ~ butnotermsfo(ds) foad(dz2) andfeved 1) feved d2)- Itis the

dences are identical to that for the hard sphere system, witfibsence of these two latter terms which allows for the exis-
out dipoles. tence of a type-A transition fof,qq. This result is in agree-

(i) If T,<T<T,, the TDOF's freeze first ap.=0.52 via ment with a rather general treatment of a bilinear memory

a typeB transition, and at the critical ling/(T) (the dashed ~kernel, where it has been proven that a type-A transition can
line in Fig. 1) the ODOF's freeze by a type-A transition. This only occur if an additional symmetry exist§0]. The struc-
latter transition corresponds tcspin glass transitiofi48], as  ture ofM %% _and ofM 2%, also implies that a freezing of the

. e N . even
was discussed within MCT for Heisenberg spin glasses byDOF's (i.e., I=1'=0) induces a glass transition for all

Gotze and Sjgren[49)]. , , _ fim.1'm With | andl” even. This can happen already at arbi-
(iii) For T<T,, both TDOF's and ODOF's freeze simul- trary high temperatures, provideg> .. Similarly, if

taneously_ at the critical |IH@C(T). .These f|nd|ng§ demon- f1 w17 fOF Io,12 0dd freezes, then all ODOF’s withand’
strate a hierarchy for the freezing, i.e., the ODOF’s can never© "o

freeze before the TDOF’s are frozen. This result become8dd will freeze. Therefore, the different transition scenarios
obvious from Eq.(80). Assumingf3(q)=0, it follows that described above do not really discriminate between TDOF's

(H*)™=0, which implies thatf™(q)=0. A freezing of the ~2nd ODOF's, but betweenl” even and, | odd. _
ODOF'’s alone, could only occur ifi(%)™ would involve a This hierarchy of freezing also points out the different

m m . : role of packing and temperature. Primarily, it is tdense
:grmélégh)t;lr(jze) 'Wilijcchh rae(;i:?;isz?rvfrfrtblsbgog?/g:w edue packingwhich leads to theage effecf1] and finally to the
stress that the topology of the phase diagfamFig. 1) and fr'eezmg qf the TDOF's. The temperatufas far as the den-
in particular the existence of a type-A transition is neither arSity 'émains constanseems to play a less important role.
artifact of the restriction of to 0 and 1 nor an artifact of the _ With the behavior of the static correlators fr-0 and
approximation of the static three-point correlafaf. Eq.  T—0, one can prove that the critical ling2(T) doesnotgo
(C6)], but a result of the additional symmetry of dipolar hardto zero at afinite temperature below,. Although an ex-
spheres, which is the invariance under the transformatiotrapolation of the steep descentcp)f(T) depicted in Fig. 1
{mn}—{—mn}. This symmetry implies thaG, n(q,t), would suggest the existence of such a finite temperature, one

and thereforef |, |/ (q) and Mlarg;,m,(q,t), vanish ifl =1’ can prove tha¢E(T)—>0 for T—0. In this respect we would

odd iNvolves Mgtj'(; only. Taking further into

aa
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like to mention that a similar steep descentqszﬁ(T) has

been found by Lai and Chari$1] for a system oftharged alaz(Q)_ Ch (q)q (Q)) '
hard spheres.
The variation of the nonergodicity parametéfs°(q) (on % arky Gaaly *
the critical type-B ling in phase withS"(q) is similar to the nlznz klzkz (v Pnr, (@)
behavior found for simple liquidgl]. Comparison of Figs. ko, A ok
2(a) and 4a) shows thatf}°(q=0)>f3°(q=q,)=3%q) X402 2n,)), (), (A1)

for the three different points on the critical ling2(T) we

mvestlgated This implies that the spectral weight of thewhere we introduced

“normalized” « peak obtained from a macroscofgic., q ,

=0), dielectric measurement is larger than that from neutron P (@)= VAT e97Y (), A=(1,m).  (A2)

scattering for arbitraryq, at least for these points on

<pE(T). The reason for this behavior is as follows: compari-

son of Figs. 2b) and 4b) reveals that thestatic correlator agky azkz alkl a2k2

Si(q) is rather structureless, with a well-pronounced maxi- <v“1 0={uy A

mum atg=0, Wherea§8(q) possesses the typical variation KT

with g, as known for liquids. It is the fact th&(q=0) is = Ouy Ok kO, 7y (A3)

significantly larger thansg(q) for all g, which makes “

f1°(q=0) larger thanf3°(q). From this, one might con-

clude that the minimum between tlaepeak and the micro-

scopic(or Boson peakwill be less pronounced for dielectric KT

data than for that from neutron scatterigtye to a sum rule alaz(q)— (Qil(Q)QEl(Q))_léalaz T

[1]), provided the spectral line width of the microscopiz “1

Boson peakis about the same in both cases. We are aware

that this argument is rather crude. A quantitative investiga- A A

tion of this question will require a solution of the time- XEn: (g 1”“)A1(q)*(q 1p“)%z(q)>' (Ad)

dependent MCT equations including the microscopic fre-

quencies, as it was done recently for a schematic m&®! Here a comment is in order. To derive EGA3) for a;

Let us finally mention that the static correlat8f(q) for a  =a,=R it is important to use the angular velocigy,, and

liquid of rigid diatomic molecules with Lennard-Jones inter- the angular momentum operatof in the body fixed frame

actions (without dipolar interactions does not exhibit a [whereLi=(R(¢,60)L);=0] because only then exp(BH)

maximum atq=0 [32] as it is the case for DHS'’s. This may factorizes into a kinetic and a potential part where the kinetic

stress the importance of the dipolar interactions for the conterm only involvesw/, [34]. After having performed the av-

clusions with respect to the relaxation strength of éhgeak  eraging ove{ w/} one may transform back to the laboratory

obtained from dielectric spectroscopy. fixed frame. Fora=T anda’ =R, or vice versa, it is obvi-
Since neither experimental nor numerical data are availpys that the correlator must vanish, sm@eﬂ‘l R"z )

able for the dynamics of dipolar hard spheres, it is not pos- 1y, Rrk, Tky

sible to check the validity of our results. Therefore, it will be = (Un, ){Vp, ){**)=0, due to(v, ©)=0.

important to investigate our MCT equations for systems Next We notice that &“pn))\ (ql) (% Pn)xz(%) trans-

where this information is known. forms underRe O(3) like

Since

it follows that

exp[ —i (ql_ qZ)Xn]Yl*lml(Qn)lemz(Qn)
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APPENDIX A: CALCULATION OF  37%(q) X JAm(—i)le (=% Xy (Q)
In this and the following appendixes we will present tech- =(=1)™S C(l.1.1: = mm-m)a®
nical details of our calculations. The crucial steps will be =D ; (hal2h 1mam) '1'2'(Q1qz)

given only. For Eq(40), with Egs.(17), (22), (36), and(37), .
we obtain Xpar(d1—0d2), (A5)
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where a,“l,2|(qlq2), which depends onl;, I,, | and

(g1-0») only, takes into account that the left-hand side of Eq.

(A5) is not normalized. With the scalar product

(Par(@ (@)= 5 | 0 fdm

X Pn,A(CI)*Pn,w(Q')

= 6q'ql 5)\1)\ y (AG)

(21,+1)(21,+1)
21+ 1

alal|2|(Q1QZ):iM2|1(

Equation (A5) together with Eq.(A8) is the basic result,

which will be used in the following. Since it is

(Pn,}\(q)> =

with Egs. (A5), (A8) and C(l41,0;m;m,0) from Ref.[34]
we obtain that

64,00,0 (A9)

((a*1pp)y [(D* (9*tpn)y L(@)=06\,, )\z(q| )2,
(A10)

with g/(g) from Eg. (37). Substituting Eq(A10) into Eq.
(A4) finally yields

-
S\, 1,0 (A11)

ag

a '
xlxzz(q)_ @1,

for all q.

APPENDIX B: CALCULATION OF
(Lj2(0)* Qldpy,(dr) Fpx (0))

Substitution ofQ=1—P leads to
(LiX(@*Q[dpy,(a1) py,(d2))
=(Lix(@)*|dpy,(d1) 5py,(d2))
—(Lix(@)* P|dpy, (1) 3py,(A2)), (B1)

(i) Let us first calculate{/:jff(q)*|5p>\1(q1) 9p\,(02))- Be-
causeL is Hermitian, it is

(Lig(a)*| 3p\,(A1) 6py(d2))
=(i(@)* (L py (A1) Fpy,(G)) +(12)
=(@f(@) 2 (@G @* (@1, ()

X 8py,(G2)) + (1-2), (82)

12 g40,C(l41,1;000),
{('1(|1+1)|2(|2+1))1/2(_

2945
we immediately obtain, from EJA5),
a’),1(A102) = (C(11151;000) " *((G%pn)1,0( 1)
X(A%P)1,0(G2)* 1P, 10(d1~ G2)), (A7)

where a straightforward calculation, which uses the product
rule for Y, [34], yields, with Eqs.(22), (A2), and(A6),

a=T

HICU41,;1-10+C(141,;110], a=R.
(A8)

where Eqs(20) and(36) were used. Substituting’(q) from
Eqg. (17) into Eq. (B2), and performing the average over the
velocities(cf. Appendix A with Eq. (A2) we obtain

(Lix(a)*| px,(d1) 3p),(A2))
KT N N
= 1= (@(@) 2 ((@pna(@* (3pn)s,(A)
X 5py,(G2)) +(12). (83)

Now, Eq.(A5) can be used. This yields

(Liv(@)*] px, (A1) 6py (d2))

=—(qI (@) (- 1)'"12 C(ll41%;

2

—mny—m})
><af.“1|5<q-ql>< DIVICELH 5m2(q2)> +(1-2).
For the next step we notice that
< ; P:,xg(q_ d:) 5P>\2(Q2)> =Ndqq,+q,5,(02),

and with some properties &@(l4l,l;m;m,m) [34], we find
that

(=D)MC(H g —mmm)ay »

=g (b’ I~|<q qy) C(14l51;mymsm),

with bf‘ll,z,l(q-ql) from Eq. (56). Putting this together we
arrive at
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(L] ;'\Z(Q)*|5p>\l(q1) 5p)\2(q2)> Substitutingbffl,lgl(qql) from Eq. (56) and making use of

=NS§, kTZ b*
~Noaayre, T Py A1 +dp=q (B6)
XC(l4lghmmzm) Sy (0) +(142)

and

KT
:N(sqql+q2| > bl,,l,,l(q ) C(14141; M mm)

NN
ApAoh

V(1 + 1) C(14151:102) + 51,4 1)C(1 41 ,1;012)

X(S_l ) mon " " )+ 14—)2 , (B4)
(a1 N S\ )\1(%)5)\2)\2((12 ( ) — T+ 1)C(141,1:000), (B7)
where we introduced a factcﬁwlrxl. Replacing the inverse

correlator by means of the Orstein-Zernike equation .
y q one can prove by use of the propertiesGffi;1,1;m;m,m)

[34] that
1 Po
(S (@)= — 47 O

it follows that [bjys(a-an) C(I11Z1 mymzm) + (12)]

_ =ai"(q) by (17151 mymamy), (B8)
(Lix(@)*[8py, (A1) Fpy,(G2))
KT mn "on with
=N5qql+q2 I 2 [blrrlrrl q ql)C(I | I 1m2 )
MM
+(1-2)]1S\, (A1) Sy, (a2) .ol 217+ 1)(215+1) |\ M2
( ]SMM a1 >\2>\2(Q2 b|”|”|—(_|)lll 1 ( )( ) C(17121:000).
21+1
2 3 by (a-anCUfZkmImEmIcyp(a) (B9)
NTAN
(ii) with P=P,+P; from Egs.(38) and(39) we obtain, for
XS, (0)Sip,(G2) + (1= 2) ]h (BS)  the second term of EqBY),

<£J'f(Q)*P|5P)\1(Q1)5P>\2(Q2)>— > (st Q))Aixgﬁjg(qv|5P>\Q(Q)><5P>\é((31)* p\, (A1) 6py(d2))

NAo

=N 2 (S Dy E (@] Q)><5P>\ ()* Spa,(42) Spr,(G2))

>\>\2

= |_ U RCRICIN 5 Bpay(A)* Bpy., (A1) By, (2)), (B10)

a )\2

where we used again the hermiticity 6fand Eqs(20) and (40). Unfortunately, the static three-point correlator in Eg10)
cannot be calculated exactly. In Appendix C it will be shown that it can be approximated as follows:

<5Px (@)* 3p\ (A1) 8p) (A2)) =N q, +q, ,2 ) b|"|~|~C(|Z|g|’3,,,m’imgmg)SA&A%(Q)SA{M(%)S)\%)\Z(CIQ).
1%273

With this, from Eq.(B10) we obtain

(Li%(@)* P|5py, (1) 3py.,(U)) ~ Néqql+q2| I's by COILMIMEM) S,y (G1) Sy, (G2). (B1Y)

A
12
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If we use Eq.(B8), the first term in the curly bracket of E¢B5) (including the prefactorjust cancels the second teriB11)
of (B1). What remains for Eq(B1) is the second term in the curly bracket which coincides with (&4).

APPENDIX C: APPROXIMATION OF  (8p, (01)* 8px,(d2) 8p (d3))

For simpleliquids, Gdze[1] used the factorization:
(9p(a1)* 0p(02) 8p(A3))~NJy, q,+q,S(d1)S(A2)S(d3) (CY

in g space. We require that the approximation of the three-point correlatanéecularliquids should obey the correct
transformation properties and that it reduces to @41) for A;=A,=\3=(0,0). We choose the approximation

3
(dpy,(qD)* 5P>\2(Q2)5PAS(Q3)>:(477)3/2“2“37'1[ Jl:[l d?Q(5p(y,21)* 8p(0z,€22)
X 8p(03,023)) Y}, (Q1)Y),(22)Y,,(23)
mi'2*'3*'1(477)3’2(477/N)2f H (dZdeZQj')J dZQH 5(9,91’)Y;fl(Ql)sz(Qz)YM(QS)

X (6p(d1,21)* 6p(a1,Q1)p(A2,022) 6p(A2,025)* 6p(d3,Q3)6p(03,Q23)*).

Factorization of the six-point correlator

(6p(a1,21)* 8p(01,21) p(d2,Q5) 6p(d2,25)* p(ds,Q3) 5p(ds,Q23)*)

~N®S(01,01,01)S(02,02,25)* S(A3,023,25)* 84, g, a5 (C2
where
! l * ’

S(9,0,0") =5 (8p(a.2)* 5p(q.2")), (C3)

and using that

1 ey
| @0 [ eors@o.0nvi@y@)- i s, 4
f dmrj[ 8(0,0))=(4m) M 3 by CTISIS mimEmE) Yo (1) Y (05) Y]n(25) (C5)
MAOAS

leads to

(9p\,(A1)* 6py(d2) Opy,(d3))~ NSy q, 4, > by C(171513 ;mimzm3) Sy 5 r(d1) Sy, (A2) S ,(Da). (C6)

nmynyn

17273

which is the result we used in Appendix B. It is easy to prove that (B reduces to Eq(C1) if \;=(0,0) and\{
=(0,0), and that it possesses the correct symmetry uReeD(3).

APPENDIX D: VERTICES FOR q —0

Due tog=q;+(s,, it follows thatg,— —q; for g—0. Therefore, we may writg, as
02=0:1(—1+q-g), |g[=0(1). (D1)
Then we obtain with
G (A2)=Cypr (=) +O(q) = (= 1)+ ™ ™5 gp) + O(q), (D2)

where Egs(24) and(25) [which also hold forc,,/(q) ] and)\_=(l,—m) were used, that
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2 v (AN AN 1100 N) = 2 [Bly 4 (d- A1) C"1lm mam) ey, (d2)
}\U )\U

+(= )2 Wl (= g- ) C(14lm mum) e (dh) 1+ O(a)

= 2 bl (@-a)C"LLEm mmicyn () + X (—1)'2"" e WhE (—q-qy)

N'(#Xp) N'(#)\)

XC(I"l;m"mym)cy”\n(d1)
+[07,1(9- A1) Cl 2l ol — mpmpm) + (= 1)|1+|2+m1+m2b|al|1|( —0-01)

X C(lgl4l: = mgmym) ey, (dh) +O(q). (D3)

For [ #0 the restricted sum in E4D3) is generically non-

zero. Therefore, it is fot 0, ci(y) =162y~ [8(cy +4ch) - 5(ci +8cp)y?]
a . . n 1
% VAN QN1 02N 2 N) =0(1). (D4) T —8(cg3)+4c§”)y+§ @+ 2cM+4c®
For \=(0,0) the Clebsch-Gordon coefficients (1) 3) Bu? 3l
C(l41,0;m;m,0) are nonzero fol;=I, and m;+m,=0 +10cp "+ 14cp” -2 d3 yr|siny

only. Therefore, both restricted sums in EB3) do vanish,
and it remains

+|—8(cP+4cd)+ (e +4cP+ L
2 v (AN |dihid2h2;N") 1
N +16c¥)y?— 3 c+cP+cP+2cy
:[bﬁlzo(Q'Q1)C(|2|202_m2m20) Bu?
M
" +2c¥-2 ) “|cos E3
+(_1)'1+'2+m1+m2b|lllo(_q.ql) D )Y y (E3
X C(I11,0;=mym;0)]cy (A1) +O(q) and
_|O(q), a=T (05)
o), e=R, ci<y>=16w2d3y6{[8<c<f>—2c<§>)—%<c21>—4c<.§>)y2]
where Egs(56) and (B6) has been used. 1
+|—8(cP-2c¥)y+ 3 cO+2¢H+4cy
APPENDIX E: RESULT FOR c["(q)
2
The direct correlation functiog,.;., (q) becomes di- —5cM) 7B+ Br\ 3 sinv+| —8(c®—2c®
agonal in theg frame and in the MSA. D D g3 )Y SNy (e o)
=cm 1
Cim;1m (A, 1) =¢(Q) 811+ S - (ED) + (3ol + 4~ 3o —8el )y~ 5 | e+ ol
To calculatecy,. ;- (0,t) from Eq. (73) it is important to )
note that we keep+ 0 and perform the limit volumé&/— +c®_c_® 4 Bu ) cosy (E4)
first, and afterwards the limi— O can be taken. One has to AT g3 ’

be cautious with these two limits due to the long-range char-

acter of the dipolar interactions, which leads to@ decay ~wherey=qd is the dimensionless wave number and
for cp(r) [cf. Eq. (68)]. As a result we obtain

cd(y) = 16m2d% ~8{[24c;— 2¢,y?] c’=2«[c,(2k@)—C,(—ke)], v=0,1,3
+[ —24c.y+ (Co+ 2C1 + 4Co) y3]si
ey (o 2ea ATy o =in2ei2k) e - kp)], (€D
+[—24cs+ (2¢,+12c,5)y?

—(Co+C1+C3)y*Icosy}, (E2) =3kl 2c3(2k @) +C3(— ke)].
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